The paper presents a formulation and verification of a 2D soil – structure interaction model which enables the analysis of reinforced concrete shallow foundations under monotonic short-time loads. The structure supported by a deformable subsoil, whose elasto-plastic features are being considered. The structure model describes: the ability of crack creation, non-linear stress – strain characteristics of concrete and reinforcement and also reinforcement – concrete interaction. The foundation – subsoil contact model enables the identification of slide and adhesion zones.
The presented mathematical formulation allowed for the development of a set of finite elements simulating the behaviour of the foundation, the subsoil and the contact zone between them. The elasto-plastic approach was used to describe the behaviour of the structure, the subsoil and the contact phenomena. Computer programs were prepared and verifying analyses were presented.
REFERENCES(35)
1.
Look, BG 2007. Handbook of geotechnical investigation and design tables. London: Taylor & Francis.
Dhadse, GD, Ramtekkar, G and Bhatt, G 2022. Influence due to interface in finite element modeling of soil-structure interaction system: a study considering modified interface element. Research on Engineering Structures & Materials 8 1, 127-154.
Goodman, RE, Taylor, RL and Brekke, TL 1968. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division 94, 3, 637-659.
Desai, CS, Zaman, MM, Lighter, JG and Siriwardane, HJ 1984. Thin-layer element for interfaces and joints. Int. J. Num. Anal. Meth. Geomech. 8, 1, 19-43.
Qian, XX, Yuan, HN, Li, QM and Zhang BY 2013. Comparative study on interface elements, thin-layer elements, and contact analysis methods in the analysis of high concrete-faced rockfill dams. Journal of Applied Mathematics 2013, 1-11.
Damians, IP, Yu, Y, Lloret, A and Bathurst, RJ 2015. Equivalent interface properties to model soil-facing interactions with zero-thickness and continuum element methodologies. From Fundamentals to Applications in Geotechnics, 1065-1072.
Dalili, SM, Huat, BBK, Jaafar, MS and Alkarni, A 2015. Soil – framed structure interaction analysis – a new interface element. Latin American J. of Solids Struct 12, 2, 226-249.
Li, Y-K, Han, X-L, Ji, J, Fu, D-L, Qiu, Y-K, Dai, B-C and Lin, C 2015. Behavior of interfaces between granular soil and structure: A state-of-the-art review. The Open Civil Engineering Journal 9, 213-223.
Dhadse, GD, Ramtekkar, G and Bhatt, G 2021. Finite element modeling of soil structure interaction system with interface: a review. Archives of Computational Methods in Engineering 28, 5, 3415-3432.
Chen, X, Zhang, J, Xiao, Y and Li, J 2015. Effect of roughness on shear behavior of red clay – concrete interface in large-scale direct shear tests. Can. Geotech. J. 52, 1122-1135.
Zhang, G, Liang, D and Zhang, JM 2006. Image analysis measurement of soil particle movement during a soil–structure interface test. Computers and Geotechnics, 33, 4-5, 248-59.
DeJong, JT and Westgate, ZJ 2009. Role of initial state, material properties, and confinement condition on local and global soil – structure interface behavior. J. Geotech. Geoenviron. Eng. 135, 11, 1646-1660.
Dang, HK and Meguid, MA 2013. An efficient finite–discrete element method for quasi-static nonlinear soil–structure interaction problems. Int. J. Numer. Anal. Meth. Geomech. 37, 130-149.
Carbonell, JM, Monforte, L, Ciantia, LM, Arroyo, M and Gens, A 2022. Geotechnical particle finite element method for modeling of soil – structure interaction under large deformation conditions. Journal of Rock Mechanics and Geotechnical Engineering 14, 967-983.
Koiter, WT 1960. General theorem for elastic-plastic solids. In: Snedon, IN and Hill, R (eds) Progress in solid mechanics. Amsterdam: North Holland, 1, 165-221.
Owen, DR and Figueiras, JA 1984. Ultimate load analysis of reinforced concrete plates and shells including geometric nonlinear effects. In: Hinton, E and Owen, DR (eds) Finite element software for plates and shells. Swansea: Prineridge Press, 327-382.
Zienkiewicz, OC and Taylor, RL 1991. The finite element method. Vol. 2 Solid and fluid mechanics, dynamics and non-linearity. London: McGrow-Hill, 4th ed.
Bergan, PG 1984. Some aspects of interpolation and integration in nonlinear finite element analysis of reinforced concrete structures, In: Damjanić, F et al. (eds) Computer-Aided Analysis and Design of Concrete Structures. Swansea: Pineridge Press, 301-316.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.