ORIGINAL ARTICLE
A Study of the Durability of Concrete Reinforced with Hemp Fibers Exposed to External Sulfatic Attack
 
More details
Hide details
1
Ph.D. student, Laboratory of Soil Mechanics and structures (LMSS), Dept. of Civil Engineering, Faculty of Science and Technology, University of Mentouri Brothers Constantine 1, Constantine, Algeria
 
2
Department of Civil Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
 
3
Department of Geography and Land Sciences, University of Mentouri Brothers Constantine1, Constantine, Algeria
 
 
Online publication date: 2020-08-20
 
 
Publication date: 2020-06-01
 
 
Civil and Environmental Engineering Reports 2020;30(2):158-184
 
KEYWORDS
ABSTRACT
The purpose of this paper is to study the durability of concrete reinforced with hemp fibers in the face of external Sulfatic attack. For this purpose, five types of concrete were formulated; three types of concrete reinforced with hemp fibers (HC-0.25, HC-0.5, and HC-1) at 0.25%, 0.5%, and 1 % of hemp fibers in volume, respectively. And two control concretes, being ordinary concrete (OC) and polypropylene fiber reinforced concrete (PC). To assess the sulfatic attacks, the described concrete types underwent two aging protocols: 1) a complete immersion in 12.5 % Sodium Sulfate (Na2SO4) solution, and 2) an accelerated aging protocol consisting of immersion/drying in the same sulfate solution at a temperature of 60°C. The results show that concrete reinforced with 0.25 % of hemp fibers is the optimal amount compared to control concretes in terms of physico-mechanical performance and durability under sulfate attack. This number of fibers could enable the production of green and durable structural concretes based on untreated hemp fibers.
 
REFERENCES (60)
1.
Afroughsabet,V, Luigi Biolzi and Paulo JM Monteiro 2018. The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete, Composites Part B 139, 84–96.
 
2.
Simões, TH, Costa, D, Dias-da-Costa and E, Júlio 2017. Influence of fibers on the mechanical behavior of fiber-reinforced concrete matrixes. Construction and Building Materials 137, 548–556.
 
3.
Lee, JH, Baiksoon Cho, Eunsoo Choiand Yong-Hyung Kim 2016. Experimental study of the reinforcement effect of macro-type high strength polypropylene on the flexural capacity of concrete. Construction and Building Materials 126, 967–975.
 
4.
Zhang, M, Chen, J, Lv, Y, Wang, D and Ye,J 2013. Study on the expansion of concrete under attack by sulfate and sulfate–chloride ions. Construction and Building Materials 39, 26–32.
 
5.
Secco, J, Giulio Isacco Lampronti, Moritz-Caspar Schlegel, Maritan, L and Zorzi, F 2015. Degradation processes of reinforced concretes by combined sulfate–phosphate attack. Cement and Concrete Research 68, 49–63.
 
6.
Lothenbach, B, Bary, B, Le Bescop, P, Schmidt, Th, N, Leterrier, 2010. Sulfate ingress in Portland cement. Cement and Concrete Research 40, 1211–1225.
 
7.
El-Hachem, RE, Rozière, F and Grondin, A. Loukili 2012. New procedure to investigate external sulphate attack on cementitious materials. Cement & Concrete Composites 34, 357–364.
 
8.
Müllauer, W, Beddoe, R and Heinz, D 2013. Sulfate attack expansion mechanisms. Cement and Concrete Research 52, 208–215.
 
9.
Karahan, O and Duran Atis, C 2011. The durability properties of polypropylene fiber-reinforced fly ash concrete. Materials and Design 32, 1044–1049.
 
10.
Arslan, MA 2016. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Construction and Building Materials 114, 383–391.
 
11.
Kuder, KG and Shah, SP 2010. Processing of high-performance fiber-reinforced cement-based composites. Construction Building Materials 24 (2), 181–186.
 
12.
Soylev, TA and Ozturan, T 2014. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Construction and Building Materials 73, 67–75.
 
13.
Grubeša, IN, Markovic, B, Gojevic, A and Brdaric, J 2018. Effect of hemp fibers on fire resistance of concrete. Construction and Building Materials 184, 473–484.
 
14.
Ziane, S, Khelifa, MR, Mezhoud, S and Medaoud, S 2020. Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses. Asian Journal of Civil Engineering.
 
15.
Hsie, M, Tu, C and Song, PS 2008. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering A 494, 153–157.
 
16.
Charlet, K, Baley, C, Morvan, C, Jernot, JP, Gomina, M and Bréard, J 2007. Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Composites Part A: Applied Science and Manufacturing 38, 1912–1921.
 
17.
Kakooei, S, Md Akil, H, Jamshidi, M and Rouhi, J 2012. The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials 27, 73–77.
 
18.
Shah, S, Swartz, S and Ouyang, C 1995. Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock, and other quasi-brittle materials. Wiley- Interscience.
 
19.
Wei, J and Meyer,Ch 2015. Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research 73, 1.
 
20.
Merta, I and Tschegg, EK 2013. Fracture energy of natural fibre-reinforced concrete. Construction and Building Materials 40, 991–997.
 
21.
Pickering, KL, Efendy, MA and Le, TM 2016. A review of recent developments in natural fibre composites and their mechanical performance. Compos Appl Sci Manuf 83, 98–112.
 
22.
Hamza, S, Saad, H, Charrier, B, Ayed, N and Charrier-El Bouhtoury, F 2013. Physicochemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products 49, 357–365.
 
23.
Shahzad, A 2012. Hemp fiber and its composites–a review. J. Compos. Mater 46, 973–986.
 
24.
Zampori, L, Dotelli, G and Vernelli, V 2013. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in building. Environmental Science & Technology 47, 7413–7420.
 
25.
Wang, H 2002. Design and optimisation of chemical and mechanical processing of hemp for rotor spinning and textile applications, PhD Thesis. University of New South Wales.
 
26.
Li, Z, Wang, X and Wang, L 2006. Properties of hemp fibre-reinforced concrete composites. Composites Part A 37 (3), 497–505.
 
27.
Li, Z, Wang, L and Wang, X 2004. Compressive and flexural properties of hemp fiber-reinforced concrete. Fibers Polym. 5 (3), 187–197.
 
28.
Khelifa, MR 2009. Effet de l’attaque sulfatique externe sur la durabilité des bétons autoplaçants, Thèse de doctorat en Génie Civil, Ecole Polytechnique de l’Université d’Orléans.
 
29.
Molez, L, Bian, H and Prince-Agbodjan, W 2012. Résistance au gel/ dégel des BFUHP: Compétition entre endommagement et cicatrisation. Chambéry, Savoie: XXXe Rencontres de l’AUGC-IBPSA.
 
30.
Chamoin, J 2013. Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maitrise de la formulation, PhD Thesis. INSA Rennes.
 
31.
Niyigena, C 2016. Variabilité des performances de bétons de chanvre en fonction des caractéristiques de la chènevotte produite en Auvergne, PhD Thesis Universite Blaise Pascal-Clermont II.
 
32.
Sedan, D, Pagnoux, C, Smith, A and Chotard, T 2008. Mechanical properties of hemp fiber-reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society 28, 183–192.
 
33.
NF EN 197-1 (2000). Cement - part 1: Compositions. Specifications and conformity criteria for common cement. Brussels: European Committee for Standardization.
 
34.
NF EN 934-2 (2012). Adjuvants pour bétons, mortier et coulis - Partie 2 : adjuvants pour béton - Définitions, exigences, conformité, marquage et étiquetage.
 
35.
NF EN 12350-2 Avril (2012). Essais pour béton frais - Partie 2 : essai d’affaissement [Testing fresh concrete - Part 2: Slump test], in french.
 
36.
NF EN 12350-6 Avril (2012). Essais pour béton frais - Partie 6 : masse volumique, French: AFNOR.
 
37.
NF P 15-471. Essais des Bétons – Essais Destructifs, Norme Française homologuée.
 
38.
NF P 18-414 (1993). Essais des Bétons – Essais Non Destructifs. Mesure de la Fréquence de Résonance Fondamentale [Testing of concrete - nondestructive testing - Measurement of the fundamental resonance frequency]. French: AFNOR.
 
39.
AFPC-AFREM (1997). Recommended methods for measuring of durability parameters. Proceedings of the technical AFCP/AFREM days on concrete durability, Toulouse (pp.125–134). 11 and 12 December.
 
40.
Ghrici, M, Kenai, S and Meziane, E 2006. Mechanical and durability properties of cement mortar with algeria, natural pozzolana. Journal of Materials Science 41(21), 6965–6972.
 
41.
Kevin, B 2006. Etude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité, Thèse de doctorat en Sciences des Matériaux, Université d’Orléans.
 
42.
Brunetaud, X 2005. Etude de l’influence des différents paramètres et leurs interactions sur la cinétique et l’amplitude de la réaction sulfatique interne au béton, Thèse de doctorat en Physicochimie des Matériaux, Ecole Centrale de Paris.
 
43.
Brunetaud, X, Linder, R, Divet, L, Duragrin, D and Damidot, D 2007. Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation. Materials and Structures 40(6), 567–578.
 
44.
Lane, DS and Ozyildirim, HC 1999. Evaluation of the potential for internal sulfate attack through adaptation of ASTM C 342 and the Duggan test. Cement. Concrete and Aggregates 21(1), 43–58.
 
45.
Khelifa, MR, Leklou, N, Bellal, T, Hebert, RL and Ledesert, AB 2016. Is alfa a vegetal fibre suitable for making green reinforced concrete? European Journal of Environmental and Civil Engineering pp. 1-21.
 
46.
Page, J, Khadraoui, F, Boutouil, M and Gomina, M 2017. Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials 140, 344–353.
 
47.
Okeola, A, Abuodha and Mwero, J 2018. Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete, Fibers 6, 0053.
 
48.
Aziz, MA, Paramasivam, P and Lee, SL 1981. Prospects for natural fibre-reinforced concretes in construction. Int. J. Cem. Compos. Lightweight Concr. 3, 123–132.
 
49.
Bentur, A 2007. Fibre-reinforced cementitious composites, 2nd Edition, Taylor & Francis, London; New York.
 
50.
Daya, A, Langlet, E, Benazzouk, T and Quéneudec, AM 2008. Feasibility study of lightweight cement composite containing flax by-product particles: Physico-mechanical properties. Cement and Concrete Composites 30, 957–963.
 
51.
Xie, X, Zhou, Z and Jiang, M 2015. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos Part B: Eng. 78, 153–161.
 
52.
Achour, A, Fouad Ghomari and Naima Belayachi 2017. Properties of cementitious mortars reinforced with natural fibers, Journal of Adhesion Science and Technology.
 
53.
Carrillo, J, Ramirez, J and Lizarazo-Marriaga, J 2019. Modulus of elasticity and Poisson’s ratio of fiber-reinforced concrete in Colombia from ultrasonic pulse velocities. Journal of Building Engineering 23, 18–26.
 
54.
Savastano, H et al. 1999. Plant fibre-reinforced cement components for roofing. Constr Build Mater. 13, 433–438.
 
55.
Magniont, C 2010. Contribution to the formulation and characterization of an eco-building material based on agricultural resources, PhD Thesis in Civil Engineering. Toulouse: Toulouse University.
 
56.
Shoukry, H et al. 2016. Thermo-physical properties of nanostructured lightweight fiber-reinforced cementitious composites. Construction and Building Materials.
 
57.
Kriker, A, Debicki, G, Bali, A, Khenfer, MM and Chabannet, M 2005. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem. Concr. Compos. 27, 554–564.
 
58.
Ali, M 2014. Seismic performance of coconut-fiber-reinforced concrete columns with different reinforcement configurations of coconut-fiber ropes. Construction and Building Materials 70, 226–230.
 
59.
Yan, L and Chouw, N 2014. Dynamic and static properties of flax fibre-reinforced polymer tube confined coir fibre-reinforced concrete. J. Compos. Mater. 48 (13), 1595–1610.
 
60.
John, MJ and Anandjiwala, RD 2008. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composite 29, 187–207.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top