ORIGINAL ARTICLE
Analysis of Groundwater Temperature in Urban Conditions - the Case of Wrocław, Poland
 
More details
Hide details
1
Department of Geodesy and Geoinformatics, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Sciences and Technology, Wroclaw, Poland
 
2
Department of Mining, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Sciences and Technology, Wroclaw, Poland
 
 
Submission date: 2024-12-07
 
 
Final revision date: 2025-01-25
 
 
Acceptance date: 2025-02-02
 
 
Online publication date: 2025-02-12
 
 
Publication date: 2025-02-12
 
 
Corresponding author
Monika Hajnrych   

Department of Geodesy and Geoinformatics, Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Poland
 
 
Civil and Environmental Engineering Reports 2025;35(1):213-229
 
KEYWORDS
TOPICS
ABSTRACT
With increasing urbanization, it is becoming important to study the impact of human activity and climate change on the underground environment, including groundwater temperatures. The subsurface urban heat island (SubUHI) is one of the effects of these changes, which consists in increasing the temperature of soil and groundwater in urban areas. This article analyses groundwater temperatures in Wrocław in 2022–2024. The research was conducted at 19 measurement points. The average groundwater temperature was 12.7°C, with values from 8.9°C to 25.4°C. The highest temperatures were recorded in the city center, and the lowest on its western outskirts. Spatial analysis showed higher temperatures in the city center, related to the influence of underground infrastructure and artificial surfaces. At a depth of 15 meters, the influence of external factors on groundwater temperature disappeared. The results indicate the need for further research on local factors influencing groundwater temperature, which may be important for water resource management in cities.
REFERENCES (53)
1.
United Nations Department of Economic and Social Affairs 2019, World Urbanization Prospects: The 2018 Revision (UN). Available online. Access: 2024-12-03.
 
2.
Yu, Z, Yao, Y, Yang, G, Wang, X and Vejre, H 2019. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. Forest Ecology and Management, 446, 214–25.
 
3.
Epting, J and Huggenberger, P 2013. Unraveling the heat island effect observed in urban groundwater bodies – Definition of a potential natural state. Journal of Hydrology 501, 193–204.
 
4.
Oke, TR 1982. The energetic basis of the urban heat island. Journal of the Royal Meteorological Society, 1–24.
 
5.
Oke, TR 1995. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects Wind Climate in Cities. ed J E Cermak, A G Davenport, E J Plate and D X Viegas (Dordrecht: Springer Netherlands), pp 81–107.
 
6.
Vasenev, V, Varentsov, M, Konstantinov, P, Romzaykina, O, Kanareykina, I, Dvornikov, Y and Manukyan, V 2021. Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis. Science of The Total Environment 786, 147457.
 
7.
Edmondson, JL, Stott, I, Davies, ZG, Gaston, KJ and Leake, JR 2016. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Sci Rep 6, 33708.
 
8.
Benz, SA, Bayer, P, Menberg, K, Jung, S and Blum, P 2015. Spatial resolution of anthropogenic heat fluxes into urban aquifers. Science of The Total Environment 524–525, 427–439.
 
9.
Previati, A and Crosta, GB 2021. Characterization of the subsurface urban heat island and its sources in the Milan city area, Italy. Hydrogeol J 29, 2487–500.
 
10.
Worsa-Kozak, M and Arsen, A 2023. Groundwater Urban Heat Island in Wrocław, Poland. Land 12, 658.
 
11.
Menberg, K, Blum, P, Schaffitel, A and Bayer, P 2013. Long-Term Evolution of Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island. Environ. Sci. Technol. 47, 9747–55.
 
12.
Luo, Z and Asproudi, C 2015. Subsurface urban heat island and its effects on horizontal ground-source heat pump potential under climate change. Applied Thermal Engineering 90, 530–7.
 
13.
Zhan, W, Ju, W, Hai, S, Ferguson, G, Quan, J, Tang, C, Guo, Z and Kong, F 2014. Satellite-Derived Subsurface Urban Heat Island. Environ. Sci. Technol. 48, 12134–40.
 
14.
Huang, S, Pollack, HN and Shen, P-Y 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403, 756–8.
 
15.
Ferguson, G and Woodbury, A D 2007. Urban heat island in the subsurface: Subsurface urban heat island. Geophys. Res. Lett. 34.
 
16.
16 Zhu, K, Bayer P, Grathwohl, P and Blum, P 2015. Groundwater temperature evolution in the subsurface urban heat island of Cologne, Germany. Hydrol. Process. 29, 965–78.
 
17.
Hachem, S, Duguay, CR and Allard, M 2012. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere 6, 51–69.
 
18.
Schwarz, N, Schlink, U, Franck, U and Großmann, K 2012. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecological Indicators 18, 693–704.
 
19.
Rotta Loria, AF 2023. The silent impact of underground climate change on civil infrastructure. Commun Eng 2, 44.
 
20.
Blum, P, Menberg, K, Koch, F, Benz, SA, Tissen, C, Hemmerle, H and Bayer, P 2021. Is thermal use of groundwater a pollution? Journal of Contaminant Hydrology 239, 103791.
 
21.
Brielmann, H, Griebler, C, Schmidt, SI, Michel, R and Lueders, T 2009. Effects of thermal energy discharge on shallow groundwater ecosystems: Ecosystem impacts of groundwater heat discharge FEMS Microbiology. Ecology 68, 273–86.
 
22.
Menberg, K, Bayer, P, Zosseder, K, Rumohr, S and Blum, P 2013. Subsurface urban heat islands in German cities. Science of The Total Environment 442, 123–33.
 
23.
Smerdon, JE, Pollack, HN, Cermak, V, Enz, JW, Kresl, M, Safanda, J and Wehmiller, JF 2006. Daily, seasonal, and annual relationships between air and subsurface temperatures. J. Geophys. Res. 111.
 
24.
Čermák, V, Bodri, L, Šafanda, J, Krešl, M and Dědeček, P 2014. Ground-air temperature tracking and multi-year cycles in the subsurface temperature time series at geothermal climate-change observatory. Stud Geophys Geod 58, 403–24.
 
25.
Previati, A, Epting, J and Crosta, GB 2022. The subsurface urban heat island in Milan (Italy) - A modeling approach covering present and future thermal effects on groundwater regimes. Science of The Total Environment 810, 152119.
 
26.
Bucci, A, Barbero, D, Lasagna, M, Forno, MG and De Luca, DA 2017. Shallow groundwater temperature in the Turin area (NW Italy): vertical distribution and anthropogenic effects. Environ Earth Sci 76, 221.
 
27.
García-Gil, A, Vázquez-Suñe, E, Schneide, EG, Sánchez-Navarro, JÁ and Mateo-Lázaro, J 2014. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Science of The Total Environment 485–486, 575–87.
 
28.
Perrier, F, Le Mouël, J-L, Poirier, J-P and Shnirman, M G 2005. Long-term climate change and surface versus underground temperature measurements in Paris. Int. J. Climatol. 25, 1619–31.
 
29.
Farr, GJ, Patton, AM, Boon, DP, James, DR, Williams, B and Schofield, DI 2017. Mapping shallow urban groundwater temperatures, a case study from Cardiff, UK. Quarterly Journal of Engineering Geology and Hydrogeology 50, 187–98.
 
30.
Visser, P W, Kooi, H, Bense, V and Boerma, E 2020. Impacts of progressive urban expansion on subsurface temperatures in the city of Amsterdam (The Netherlands). Hydrogeol J 28, 1755–72.
 
31.
Rotta Loria, AF, Thota, A, Thomas, AM, Friedle, N, Lautenberg, JM and Song, EC 2022. Subsurface heat island across the Chicago Loop district: Analysis of localized drivers. Urban Climate 44, 101211.
 
32.
Taniguchi, M and Uemura, T 2005. Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics of the Earth and Planetary Interiors 152, 305–13.
 
33.
Taniguchi, M, Uemura, T and Jago-on, K 2007. Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities. Vadose Zone Journal 6, 591–6.
 
34.
Yamano, M, Goto, S, Miyakoshi, A, Hamamoto, H, Lubis, RF, Monyrath, V and Taniguchi, M 2009. Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution. Science of The Total Environment 407, 3120–8.
 
35.
Huang, S, Taniguchi, M, Yamano, M and Wang, C 2009. Detecting urbanization effects on surface and subsurface thermal environment — A case study of Osaka. Science of The Total Environment 407, 3142–52.
 
36.
Yalcin, T and Yetemen, O 2009. Local warming of groundwaters caused by the urban heat island effect in Istanbul, Turkey. Hydrogeol J 17, 1247–55.
 
37.
Salem, Z E-S and Osman, OM 2016. Shallow subsurface temperature in the environs of El-Nubaria canal, northwestern Nile Delta of Egypt: implications for monitoring groundwater flow system. Environ Earth Sci. 75, 1241.
 
38.
Liu, C, Shi, B, Tang, C and Gao, L 2011. A numerical and field investigation of underground temperatures under Urban Heat Island. Building and Environment 46, 1205–10.
 
39.
Ferguson, G and Woodbury, A D 2004. Subsurface heat flow in an urban environment. J. Geophys. Res. 109, 2003JB002715.
 
40.
Buczyński, S and Staśko, S 2013. Temperatura płytkich wód podziemnych na terenie Wrocławia [The temperature of shallow groundwater in the Wrocław area]. Biuletyn Państwowego Instytutu Geologicznego 456, 51–5.
 
41.
Główny Urząd Statystyczny - wroclaw.stat.gov.pl [Statistics Poland] Available online. Access: 2024-12-03.
 
42.
Winnicka, G 1988. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50000. [Explanations for the detailed geological map of Poland]. Wydawnictwo Geologiczne.
 
43.
Różycki, M 1968; Budowa geologiczna okolic Wrocławia. [Geological structure of the Wrocław area], Biul. Inst. Geologicznego 214.
 
44.
Malinowski, J 1991. Budowa geologiczna Polski. [Geological structure of Poland]. Hydrogeologia 7. Warszawa: Wyd. Geol.
 
45.
Mądrala, M 2002. Budowa geologiczna i wody podziemne okolic Wrocławia. [Geological structure and underground waters of the Wrocław area]. Raport 2002 – Środowisko.
 
46.
Wroclaw City Council. Study of the Conditions and Directions of Spatial Development in Wrocław; Wroclaw City Council: Wroclaw, Poland, 2018. (In Polish).
 
47.
Bożek, A, Dubicki, A, Dziewanowski, M, Kwiatkowska-Szygulska, B 2002. Wody powierzchniowe. [Surface water]. Środowisko Wrocławia – Informator 2002, Dolnośląska Fundacja Ekorozwoju, Wrocław.
 
48.
Goldsztejn, J, Frankowski, Z, Badura, J and Tarnawski, M 2009. Baza danych geologiczno-inżynierskich wraz z opracowaniem Atlasu geologiczno – inżynierskiego aglomeracji wrocławskiej. [Database of geological and engineering databases, including the Geological and Engineering Atlas of the Wrocław Agglomeration], Wrocław.
 
49.
Dubicki, A, Dubicka, M and Szymanowski, M 2002. Klimat Wrocławia. [The climate of Wrocław]. Available online. Access: 2024-12-03.
 
50.
Solnist - https://www.solinst.com/ Access: 2024-12-03.
 
51.
Tomczak, M 1998. Spatial interpolation and its unceratinty using automated anistropic inverse distance weighting (IDW) - cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis 2, 18-30.
 
52.
Hofierka, J, Cebecauer, T and Šúri, M 2007. Optimisation of Interpolation Parameters Using Cross-validation Digital Terrain Modelling. Lecture Notes in Geoinformation and Cartography ed R J Peckham and G Jordan (Berlin, Heidelberg: Springer Berlin Heidelberg), 67–82.
 
53.
Taylor, CA and Stefan, HG 2009. Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology 375, 601–12.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top