CASE REPORT
Analysis of Tunnel Ventilation During Tunnelling - A Case Study
 
More details
Hide details
1
Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, Gliwice
 
 
Online publication date: 2023-01-05
 
 
Publication date: 2022-12-01
 
 
Civil and Environmental Engineering Reports 2022;32(4):259-269
 
KEYWORDS
ABSTRACT
In the case of tunnelling by mining methods, mining regulations apply to the design of ventilation. The most important criteria to be taken into account when calculating the minimum air flow rate in a tunnel are the air velocity, the multiple exchange of air during one hour, not exceeding the permissible concentrations of gases and dust, and ensuring appropriate climatic conditions. In this paper, an analysis of ventilation methods is carried out, taking into account the parameters of fans and ventilation ducts. Changing the diameter of the duct line from 1,000 to 1,400 mm results in a 3-4-fold reduction in fan power. Adding a second twin installation reduces the ventilation power requirement fourfold. Making the duct lines parallel increases the ventilation power requirement by about 30-50% compared to two duct installations.
REFERENCES (14)
1.
Regulation of the Minister of the Family, Labour and Social Policy of 12 June 2018 on the maximum permissible concentrations and intensities of factors harmful to health in the working environment [Rozporządzenie Ministra Rodziny, Pracy i Polityki Społecznej z dnia 12 czerwca 2018 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy]. Journal of Laws 2018, item 1286, dated 03.07.2018.
 
2.
Regulation of the Minister of the Family, Labour and Social Policy of 12 June 2018 on the maximum permissible concentrations and intensities of factors harmful to health in the working environment [Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych]. Journal of Laws 2018, item 1286, dated 03.07.2018.
 
3.
Obracaj, D, Korzec, M and Deszcz, P 2021. Study on Methane Distribution in the Face Zone of the Fully Mechanized Roadway with Overlap Auxiliary Ventilation System. Energies 14, 6379. https://doi.org/10.3390/en1419....
 
4.
Fang, Y, Yao, Z and Lei, S 2019. Air flow and gas dispersion in the forced ventilation of a road tunnel during construction. Undergr. Space 4, 168–179.
 
5.
Hua, Y et al. 2018. Research on multi-radial swirling flow for optimal control of dust dispersion and pollution at a fully mechanized tunnelling face. Tunn. Undergr. Space Technol. 79, 293–303.
 
6.
Hua, Y et al. 2020. The development and application of a novel multi-radial-vortex-based ventilation system for dust removal in a fully mechanized tunnelling face. Tunn. Undergr. Space Technol. 98, 103253.
 
7.
Ren, T, Wang, Z and Coope, G 2014. CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system. Tunn. Undergr. Space Technol. 41, 241–254.
 
8.
Shi, G et al. 2017. Unsteady simulation for optimal arrangement of dedusting airduct in coal mine heading face. J. Loss Prev. Process Ind. 46, 45–53.
 
9.
Juszczyk, J et al. 2021. Impact of changing ventilation regulations during tunnelling by mining techniques with respect to Euro 4, 5 and 6 emission standards - a case study [Wpływ zmiany przepisów dotyczących przewietrzania podczas drążenia tuneli technikami górniczymi z uwzględnieniem norm emisji spalin Euro 4, 5 i 6 - studium przypadku]. In: Makówka, J (ed) Natural hazards in underground mines. GIG, 151-155.
 
10.
Pawiński, J et al. 1995. The ventilation of mines [Przewietrzanie kopalń]. Wydawnictwo Śląsk.
 
11.
Słota, K 2021. Ventilation of tunnels during their tunnelling in the aspect of safety improvement and changes in the regulations on maximum allowable gas concentrations - a case study [Przewietrzanie tuneli podczas ich drążenia w aspekcie poprawy bezpieczeństwa i zmiany przepisów dotyczących najwyższych dopuszczalnych stężeń gazów - studium przypadku]. In: Puchała, M (ed) Safety culture - good health and safety practices. University of Occupational Safety and Health, 129-140.
 
12.
Szlązak, N, Obracaj, D and Borowski, M, 2003. Ventilation systems for blind workings in hard coal mines [Systemy przewietrzania ślepych wyrobisk ślepych w kopalniach węgla kamiennego]. Przegląd Górniczy 59, 13-19.
 
13.
Obracaj, D 2017. Auxiliary ventilation design during driven of headings by roadheader in copper ore mines [Projektowanie wentylacji lutniowej przy drążeniu chodników kombajnem w kopalniach rud miedzi]. Cuprum 3, 13-30.
 
14.
Bystroń, H 1990. Methods of calculating unbranched mine ventilation ducts [Metody obliczania nierozgałęzionych lutniociągów kopalnianych]. Archives of Mining Sciences 34, 3.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top