ORIGINAL ARTICLE
Analysis of the Energy Parameters of Selected Biomass and Biochar Types and the Environmental Impact of Their Ashes
 
More details
Hide details
1
Faculty of Environmental Engineering, Lublin University of Technology, Poland
 
 
Online publication date: 2023-01-05
 
 
Publication date: 2022-12-01
 
 
Civil and Environmental Engineering Reports 2022;32(4):147-166
 
KEYWORDS
ABSTRACT
The study determined the similarities and differences between the fuel properties of different types of biomass (triticale and oat straw; bark: oak, alder, hornbeam, pine) and biochar (municipal waste biochar, composting biochar, pellet biochar and Fluid’s biochar). Bulk and actual densities and moisture contents, ash amounts, elemental composition (C, H, N) were determined, and the calorific value, heat of combustion and porosity of the substances studied were calculated. In addition, the physico-chemical properties of the ashes were determined. All the substances tested have high energy potential and can be used as biofuel. Fluid’s biochar had the best energy properties due to the highest calorific value and heat of combustion, as well as carbon content, with a small amount of ash. Varying composition of the ashes obtained still poses a problem in developing methods for their management.
REFERENCES (48)
1.
Adedoyin, F, Abubakar, I, Bekun FV and Sarkodie SA 2020. Generation of energy and environmental-economic growth consequences: Is there any difference across transition economies? Energy Raport 6, 1418–1427.
 
2.
Duffy, P, Fitzpatrick, C, Conway, T and Lynch, RP 2018. Energy sources and supply grids – the growing need for storage. Energy Storage Options and Their Environmental Impact 7, 1–41.
 
3.
Marks-Bielska, R, Bielski, S, Pik, K and Kurowska, K 2020, The importance of renewable energy sources in Poland’s energy mix. Energy 13, 4624.
 
4.
Duca, D and Toscano, G 2022, Biomass energy resources: feedstock quality and bioenergy sustainability, Resources 11, 57.
 
5.
Greinert A, Mrówczyńska, M and Szefran, W 2019. The use of waste biomass from the wood industry and municipal sources for energy production. Sustainability 11 (11): 3083.
 
6.
Wielgosiński, G 2009, Czy biomasa jest paliwem ekologicznym? In: Ozonek, J and Pawłowska, P (eds) Polska Inżynieria Środowiska pięć lat po wstąpieniu do Unii Europejskiej. Tom. I. Monografie Komitetu Inżynierii Środowiska 58, 347–356.
 
7.
Dyrektywa Parlamentu Europejskiego i Rady 2009/28/WE z dnia 23 kwietnia 2009 roku w sprawie promowania stosowania energii ze źródeł odnawialnych (wraz ze zamieniającą i w następstwie uchylającymi dyrektywami 2001/77/WE oraz 2003/30/WE).
 
8.
Instytutu Energetyki Odnawialnej - Możliwości wykorzystania OZE w Polsce do roku 2020.
 
9.
Olsson, O and Hillring, B 2012. Reference Module in Earth Systems and Environmental Sciences Comprehensive Renewable Energy. In: Lether, T (ed) Comprehensive Renewable Energy, Elsevier, 75–85.
 
10.
Zanchi, GN, Pena, N and Bird, N 2010. The upfront carbon debt of bioenergy, Joanneum Research. Transport and Environemnt. Avalaible on: https://www.transportenvironme....
 
11.
Resch, MG and Ladisch, MR 2020. Analysis, impacts, and solutions to biomass variability for production of fuels and value-added products. ACS Sustainable Chemical Engineering 8, 15375-15377.
 
12.
Giannini, V, Oehmke, C, Silvestri, N, Wichtman, W, Dradoni, F and Bonar, E 2016. Combustibility of biomass from perennial crops cultivated on a rewetted Mediterranean peatland. Ecological Engineering 97, 157–169.
 
13.
Arvelakis, S and Frandsen, FJ 2010. Rheology of fly ashes from coal and biomass co-combustion. Fuel 89, 3132-3140.
 
14.
Nakomcic-Smaragdakis, B, Cepic, Z and Dragutinovic, N 2016. Analysis of solid biomass energy potential in Autonomous Province of Vojvodina. Renewable and Sustainable Energy Reviews 57(C), pages 186–191.
 
15.
Kujawska, J and Wasag, H 2021. Biochar: a low-cost adsorbent of Methylene Blue from aqueous solutions. Journal of Physics: Conference Series 1736, 1-8.
 
16.
PN–EN ISO 18134-2:2017. Solid biofuels — Determination of moisture content — Oven dry method — Part 2: Total moisture — Simplified method.
 
17.
PN–EN ISO 18122:2015. Solid biofuels — Determination of ash content.
 
18.
PN–EN ISO 16948:2015. Solid biofuels — Determination of total content of carbon, hydrogen and nitrogen.
 
19.
PN EN 12457-4: 2006. Characterization of waste - leaching - compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction.
 
20.
PN EN ISO 17294-2:2016. Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS).
 
21.
PN–EN 13656:2002. Soil, treated biowaste, sludge and waste - Digestion with a hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4) or hydrofluoric (HF) acid mixture for subsequent determination of elements.
 
23.
PN–EN 10390:1997. Soil Quality - Determination of pH.
 
24.
PN–EN 27888:1999. Water Quality - Determination of electrical conductivity.
 
25.
www.beuth.de.
 
26.
Porowski, B 2016. Analiza metod określania ciepła spalania i wartości opałowej paliw. Zeszyty Naukowe SGSP 59, 45-70.
 
27.
Oleszczuk, P 2008 Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicology and Environmental Safety 69, 496-505.
 
28.
Smołka-Danielowska, D, Jabłońska, M and Godziek, S 2021. The influence of hard coal combustion in individual household furnaces on the atmosphere quality in Pszczyna (Poland). Minerals 11, 1155, 1-17.
 
29.
Liu, Z and Balasubramanian, R 2013. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite. Bioresource Technology 146, 371–8.
 
30.
Tripathi, M, Sahu, JN and Ganesan, P 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renewable And Sustainable Energy Reviews 55, 467–481.
 
31.
Yousafa, B. et al. 2017. Systematic investigation on combustion characteristics and emission reduction mechanism of potentially toxic elements in biomass – and biochar coal co–combustion systems. Applied Energy 208, 142–157.
 
32.
Sadaka, S, Sharara, MA, Ashworth, A, Keyser, P, Allen, F and Wright, A 2014. Characterization of biochar from switchgrass carbonization. Energies 7, 548–567.
 
33.
Tomczyk A. 2021. Biowęgle jako adsorbenty miedzi i srebra w układach biowęgiel–metal oraz gleba–biowęgiel–metal. Rozprawa doktorska. Instytut Agrofizyki im. Bohdana Dobrzańskiego Polskiej Akademii Nauk, 10–40.
 
34.
Phoung, T, Ueda, T, Kose, R, Nguyen, LC, Okayama, T and Miyanishi, T 2019, Properties and potential use of biochars from residues of two rice varieties, Japanese Koshihikari and Vietnamese IR50404. Journal of Material Cycles and Waste Management 21, 98–106.
 
35.
Schmidt, MW and Noack, AG 2000, Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14, 777–793.
 
36.
Spokas, KA 2010. Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manag. 1, 289–303.
 
37.
Mierzwa-Hersztek, M, Gondek, K, Jewiarz, M and Dziedzic, K 2019. Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes. Journal of Material Cycles and Waste Management 21, 786–800.
 
38.
Dreszer, K, Michałek, R and Roszkowski, A 2003. Energia odnawialna - możliwości jej pozyskiwania i wykorzystania w rolnictwie. Wyd. PTIR, Kraków. ISBN 83-9170-530-7.
 
39.
Jagustyn, B, Bątorek-Giesa, N and Wilk, B 2011. Ocena właściwości biomasy wykorzystywanej do celów energetycznych, Chemik 65, 557–563.
 
40.
Kaczmarczyk, J 2012. Analiza techniczna węgla i biomasy. Wydawnictwo Politechniki Wrocławskiej p.554.
 
41.
Sobolewski, A, Wasilewski, R and Stelmach, S 2007. Wykorzystanie paliw wtórnych w energetyce. Polityka energetyczna 10(2), 379-389.
 
42.
Greinert, A, Mrówczyńsk, M and Szefner, W 2019. Study on the possibilities of natural use of ash granulate obtained from the combustion of pellets from plant biomass. Energies 12(13), 2569.
 
43.
Ćwiąkała, M, Greinert, A, Kostecki, J and Rafalski, L 2018. The possibility to use modified flight ash as a neutralizer in the acid soils reclamation processes. Civil and Environmental Engineering Reports 4 (28), 88-104.
 
44.
Kanu, MO, Joseph, GW and George I 2021. Measurment of physicochemical properties, electrical and thermal conductivity of wood ash for effective soil amendement. Indonesian Journal of Applied Physics 11, 2.
 
45.
Parida, AK and Das, AB 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60(3), 324–349.
 
46.
Vassilev, S, Baxter, D, Andresen, LK and Vassileva, CG 2013a. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105, 40–76.
 
47.
Uliasz – Bochańczyk, A, Pawluk, A and Sierka, J 2015. Wymywalność zanieczyszczeń z popiołów lotnych ze spalania biomasy. Gospodarka surowcami mineralnumi – mineral resources management 31(3), 145-156.
 
48.
Rosik–Dulewska, Cz and Karwaczyńska, U 2008. Metody ługowania zanieczyszczeń z odpadów mineralnych w aspekcie możliwości ich zastosowania w budownictwie hydrotechnicznym. Roczniki Ochrony Środowiska 10, 205–219.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top