ORIGINAL ARTICLE
Challenges in the Design of Prefabricated Single-Family Buildings with Expanded Clay Technology - Selected Architectural and Environmental Aspects
 
More details
Hide details
1
Silesian University of Technology, Faculty of Architecture
 
2
Warsaw University of Technology, Faculty of Architecture
 
3
University of Technology Katowice, Faculty of Architecture
 
 
Online publication date: 2023-01-05
 
 
Publication date: 2022-12-01
 
 
Civil and Environmental Engineering Reports 2022;32(4):323-344
 
KEYWORDS
ABSTRACT
The architectural form of buildings is determined by many factors, one of the most important is construction technology. It remains in a close and inseparable relationship with architectural design. Contemporary technologies in construction are constantly subject to improvements, streamlining, changes aimed at increasing all kinds of efficiency (cost, thermal efficiency, labor input, etc.). One of today’s widely discussed determinants of changes in the way buildings are designed and constructed is environmental issue. An awareness of environmental degradation and climate change and their consequences prompts the search for increasingly sustainable solutions. This paper summarizes the research on prefabricated solutions and their implementation, especially in single-family residential architecture. This article presents pre-design, design, and post-design experiences related to planning and realization of single-family houses with prefabricated wall technology made of light expanded clay concrete. The authors implemented comparative qualitative and quantitative research through case studies, the method also uses experiences from their own research by design practice. The advantages and disadvantages of prefabrication in the selected technology are presented. The authors attempt to answer the question of whether the individual architectural design approach is reflected in the relevant environmental considerations, including, first, those related to the mitigation of climate change and adaptation to its consequences, and to what extent the discussed technology fits into the assumptions of climate and environmentally responsible design.
REFERENCES (42)
1.
Bergdoll, B, Christensen, P [ed.] 2008. Home Delivery: Fabricating the Modern Dwelling. The Museum of Modern Art, New York.
 
2.
Bradecki, T, Uherek-Bradecka, B 2019. Open Living Concept in Barn-House Architecture: Single Family House Case Studies, 2019 IOP Conf. Ser.: Mater. Sci. Eng. 471 082055.
 
3.
Caneparo, L 2014. Digital fabrication in architecture, engineering and construction. Springer Science and Business Media.
 
4.
Chęcińska, K 2008. Domy jednorodzinne Z prefabrykatów betonowych, Budownictwo, technologie, architektura 4(44)/2008, s. 66-69.
 
5.
Chomątowska, B 2018. Betonia. Dom dla każdego [Concrete. A home for everyone], Wydawnictwo Czarne, Wołowiec.
 
6.
Cymer, A 2018. Architektura w Polsce 1945-1989 [Architecture in Poland 1945-1989], Centrum Architektury Narodowy Instytut Architektury i Urbanistyki, Warszawa.
 
7.
Dong, L, Wang, Y, Li, HX, Jiang, B and Al-Hussein, M 2018. Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems. Sustainability, 10, 718. https://doi.org/10.3390/su1003....
 
8.
European Commission, Directorate General for Regional Policy 2011. Cities of Tomorrow. Challenges, Visions, Ways Forward. Available online: https://ec.europa.eu/regional_... (accessed on 5 September 2022).
 
9.
Graser, K, Kahlert, A and Hall, DM 2021. Dfab House: implications of a building-scale demonstrator for adoption of digital fabrication in AEC, Construction Management and Economics, 39:10, 853-873. https://doi.org/10.1080/014461....
 
10.
Herbert, G 1984. Dream of the Factory-made House: Walter Gropius and Konrad Wachsmann. MIT Press, Cambridge.
 
11.
Huuhka, S, Kaasalainen, T, Hakanen, JH and Lahdensivu, J 2015. Reusing concrete panels from buildings for building: Potential in Finnish 1970s mass housing. Resources Conservation and Recycling. https://doi.org/10.1016/j.resc....
 
12.
Jak budują Polacy? Wyniki badania SILKA YTONG: polskie budowanie [How do Poles build? SILKA YTONG survey results: Polish constructing]. Available online: https://inzynierbudownictwa.pl....
 
13.
Jimenez-Moreno, P 2021. Mass Customisation for Zero-Energy Housing. Sustainability, 13, 5616. https://doi.org/10.3390/su1310....
 
14.
Koźluk, M, Śmiechowski, D and Potempski, M 2019. Przewodnik Architektoniczny Osiedla Jazdów [Architectural Guide to the Jazdów Estate]. SAWAPW, Warszawa.
 
15.
Majka, M 2016, Polak buduje dom tradycyjnie – raport o budowie domów w 2015 roku [Pole builds house traditionally - report on house construction in 2015], [in:] Dom dla rodziny [Home for the family]. Małopolska Okręgowa Izba Architektów RP, Kraków.
 
16.
Matysiak K, Prefabrykacja w budownictwie jednorodzinnym, Zawód architekt 87/2022, s.16-26.
 
17.
Mao C. et al. 2013. Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: two case studies of residential projects. Energy and Buildings 66:165-176.
 
18.
Mika, G 2017. Od wielkich idei do wielkiej płyty. Burzliwe dzieje warszawskiej architektury [From great ideas to great plates. The turbulent history of Warsaw architecture]. Skarpa Warszawska, Warszawa.
 
19.
Moradibistouni, M, Isaacs, N, Vale, B 2018. Learning from the past to build tomorrow: an overview of previous prefabrication schemes. Available online: https://www.researchgate.net/p... (accessed on 5 September 2022).
 
20.
Orchowska, A 2016. Architektoniczne rozwiązania z zastosowaniem reużycia płyt prefabrykowanych, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, JCEEA, 2016, 63 (4/16), 365-374.
 
21.
Pan, W, Iturralde, K, Bock, T, Martinez, RG, Juez, OM and Finocchiaro, PA 2020. Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings. Sustainability 12, 5730. https://doi.org/10.3390/su1214....
 
22.
Piątek, G 2021. Najlepsze miasto świata. Warszawa w odbudowie 1944–1949 [The best city in the world. Warsaw in rebuilding 1944-1949] W.A.B., Warszawa.
 
23.
Projekty indywidualne vs. Projekty typowe, [eng. Individual projects vs. standard projects] https://www.prawo.egospodarka.... (accessed on 5 September 2022).
 
24.
Rashad, AM 2018. Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials Volume 170, 757-775. https://doi.org/10.1016/j.conb....
 
25.
Ryńska, E 2021. Developing and Designing Circular Cities: Emerging Research and Opportunities. IGI Global. https://doi.org/10.4018/978-1-....
 
26.
Seelow, AM 2018. The Construction Kit and the Assembly Line—Walter Gropius’ Concepts for Rationalizing Architecture. Arts 7, 95. https://doi.org/10.3390/arts70....
 
27.
Słownik pojęć stosowanych w statystyce publicznej [Glossary of terms used in public statistics]. Available online: https://stat.gov.pl/metainform... (accessed on 5 September 2022).
 
28.
Smith, EAT 2019. Case Study Houses. The Complete CSH Program 1945-1966. Taschen, Köln.
 
29.
Smith, RE 2010. Prefab Architecture: A Guide to Modular Design and Construction. John Wiley & Sons, Inc., Hoboken, New Jersey.
 
30.
Smith, RE, Quale, JD, [ed.] 2017. Offsite Architecture: Constructing the Future. Routladge, New York.
 
31.
Staib, G, Dörrhöfer, A and Rosenthal, M 2013. Components and Systems: Modular Construction - Design, Structure, New Technologies. Birkhäuser, München.
 
32.
Szafrańska, E 2013. Large Housing Estates in Post-Socialist Poland as a Housing Policy Challenge. European Spatial Research and Policy, 20(1), 119–129. https://doi.org/10.2478/esrp-2....
 
33.
The National Audit Office 2015, Using modern methods of construction to built homes more quickly and efficiently. Available online: https://webarchive.nationalarc... https://www.nao.org.uk/wp-cont... (accessed on 5 September 2022).
 
34.
Timberlake, J and Kieran, S 2011. Cellophane House. KieranTimberlake, Philadelphia.
 
35.
Timberlake, J and Kieran, S 2004. Refabricating Architecture. McGraw-Hill, new York.
 
36.
Tofiluk, A 2019. Prefabricated Architecture, Past and Future: from Past Industrialized Residential Buildings to Contemporary Requirements. [in.] Defining the archtectural space- tradition and modernity in architecture, vol. 6, OW Atut, Wrocław.
 
37.
Tofiluk, A 2020. Prefabrykowana architektura mieszkaniowa a zmiany klimatyczne [Prefabricated housing architecture and climate change]. Builder 272, 3, 51–55.
 
38.
Tofiluk, AM 2021. Walter Gropius i prefabrykacja – w poszukiwaniu dostępnej architektury mieszkaniowej [Walter Gropius and prefabrication - looking for affordable housing architecture]. Kwartalnik Architektury i Urbanistyki 3, 4–15.
 
39.
Tofiluk, AM and Płoszaj-Mazurek, M 2022. Technologia prefabrykacji a forma architektoniczna [Prefabrication technology vs. architectural form]. Builder 7, 50–56.
 
40.
Tofiluk, AM and Płoszaj-Mazurek, M 2022. Architektura i prefabrykacja w kontekście projektowania zrównoważonego [Architecture and prefabrication in the context of sustainable design]. Builder 4, 56–62.
 
41.
Urząd Statystyczny w Lublinie [Statistical Office in Lublin], Budownictwo w 2021 roku [Construction in 2021].
 
42.
Woźniczka, M 2021. Eksperymentalny dom prefabrykowany w systemie OWT w Krakowie – Kurdwanowie. Studium przypadku. Builder 288, 7, 96-99. DOI: 10.5604/01.3001.0014.9363.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top