ORIGINAL ARTICLE
Chemical Composition of Industrial Wood Waste and the Possibility of its Management
 
More details
Hide details
1
Department of Environmental Management, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
 
2
Department of Horticulture, West Pomeranian University of Technology in Szczecin, Słowackiego, Szczecin, Poland
 
3
Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
 
 
Online publication date: 2023-01-05
 
 
Publication date: 2022-12-01
 
 
Civil and Environmental Engineering Reports 2022;32(4):167-183
 
KEYWORDS
ABSTRACT
Organic wood waste (sawdust, shavings, pieces of wood and bark), is widely used as a secondary raw material and, after composting, for soil fertilisation and substrate production in agriculture, horticulture, forestry, urban landscaping and rehabilitation of degraded land. However, problematic to process is wood waste that is very dirty with soil. They have limited calorific value and cannot be used in the R10 recovery process of land treatment benefiting agriculture or improving the environment. However, the morphological composition of these wastes indicates that they have good properties and can be used for agricultural use and for the reclamation of degraded land. The research involved wood waste with the code 03 01 99 (other unspecified waste from wood processing and the production of panels and furniture) generated during the preparation of deciduous tree logs for the veneer production process, and ashes from the burning of wood waste generated in the veneer production factory. The aim of the study was to assess the chemical composition of these wastes and the possibility of their agricultural use. In the samples of wood waste and ashes there was determined: pH; chlorines content; conductivity; hydrolytic acidity; content of micro and macroelements and heavy metals. The morphological composition of the waste is dominated by sawdust, with a smaller share of shavings, bark and earth parts, and a small addition of pieces of wood of various sizes. It is rich in easily bioavailble as well as total macroelements and is not contaminated with heavy metals. Analyzed wood waste has deacidifying properties, high sorption and buffering capacity. Studies have shown that the wood waste produced at the veneer factory, can be used as an organic fertiliser, a component of other organic fertilisers, for soil mulching, horticultural substrate and soil and land reclamation.The ash obtained from burning wood is strongly alkaline and rich in alkaline cations, mainly Ca, Mg and K. It is not contaminated with heavy metals. The ash can be used for soil deacidification and fertilization, especially for soil reclamation. The waste from the heap can be used as an organic fertilizer, a component of other organic fertilizers, for mulching soils and as a gardening substrate. However, the possibilities for non-agricultural (e.g.: for the production of pallet, particle board) use are limited due to the high proportion of earthy parts.
REFERENCES (44)
1.
Bergeron, FC 2014. Assessment of the coherence of the Swiss waste wood management. Resour. Conserv. Recycl., 91, 62–70. Doi: Doi.org/10.1016/j.resconrec.2014.07.011.
 
2.
Besserer, A, Troilo, Girods, P, Rogaume, Y and Brosse, N 2021. Cascading recycling of wood waste: A review. Polymers 13(11), 1752, 1-14. Doi: Doi.org/10.3390/polym13111752.
 
3.
Bilenda, E and Meller, E 2018. Effect of biomass combustion ash on reaction, sorption properties and content of available forms of macronutrients in soil (Wpływ popiołów ze spalania biomasy na odczyn, właściwości sorpcyjne i zawartość przyswajalnych form makroelementów w glebie). Przemysł Chemiczny 97(5), 678-681. Doi: 10.15199/62.2018.5.3.
 
4.
Borowski, G and Miłczak, M 2001. Tests on the suitability of bottom ash briquettes as road bases (Badania przydatności brykietów z popiołów paleniskowych jako podbudowy drogowe). Postępy Nauki i Techniki 4, 136-143.
 
5.
Borzęcki, K, Pudełko, R, Kozak, M, Borzęcka, M and Faber, A 2018. Spatial distribution of wood waste in Europe (Przestrzenne rozmieszczenie odpadów drzewnych w Europie). Sylwan 162(7), 563-571.
 
6.
Ciesielczyk, W, Kamińska, A and Skoneczna, J 2011. Studies of the fluidized bed drying process of shredded woody biomass (Badania procesu suszenia fluidalnego rozdrobnionej biomasy drzewnej). Inż. Ap. Chem 50(5), 26-27.
 
7.
Czech, T, Sobczyk, A, Jaworek, A and Krupa A 2012. Comparison of physical properties of fly ash from coal, lignite and biomass combustion (Porównanie własności fizycznych popiołów lotnych ze spalania węgla kamiennego, brunatnego i biomasy). Konferencja POL-EMIS, Sienna 2012, 73-82.
 
8.
Czekała, J and Czekała, W 2012. Effect of different organic wastes on the dynamics of changes in dry matter, organic matter and organic carbon content of composts (Wpływ różnych odpadów organicznych na dynamikę zmian zawartości suchej masy, materii organicznej oraz węgla organicznego w kompostach). Journal of Research and Applications in Agricultural Engineering 57(3), 47-50.
 
9.
Demars, KR, Long, RP and Ives, JR 2000. Use of wood waste materials for erosion control (No. NETCR 20). New England Transportation Consortium. (< https://citeseerx.ist.psu.edu/... (14.06.2022)>).
 
10.
Emilsson, S 2006. International Handbook From Extraction of Forest Fuels to As Recycling. (< www.ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=Recash_International_Handbook_Final20 06_EN.pdf, 01.02.2014, pp. 1-48 (14.06.2022)>).
 
11.
Faraca, G, Boldrin, A and Astrup, T 2019. Resource quality of wood waste: The importance of physical and chemical impurities in wood waste for recycling. Waste Management 87, 135-147.
 
12.
Statistics Poland (Główny Urząd Statystyczny) 2021. Rocznik Statystyczny Leśnictwa Warszawa (Statistical Yearbook of Forestry Warsaw).
 
13.
Greinert, A and Greinert, H 2007. Assessing the economic feasibility of organic waste and plants grown on contaminated soils of the Middle Odra River (Ocena możliwości gospodarczego wykorzystania odpadów organicznych i roślin uprawianych na zanieczyszczonych glebach Środkowego Nadodrza). Inżynieria Środowiska 15, 45-54.
 
14.
Jakubus, M 2018. The place of wood waste in the circular economy (Miejsce odpadów drzewnych w gospodarce cyrkularnej). Zarządzanie Ochroną Przyrody w Lasach 11, 141-150.
 
15.
Jędrczak, A and Haziak, K 2005. Determination of requirements for composting and other methods of biological treatment of waste (Określenie wymagań dla kompostowania i innych metod biologicznego przetwarzania odpadów). Pracownie Badawczo-Projektowe. EKOSYSTEM. Sp. z o.o. Zielona Góra, maj 2005, 1-248.
 
16.
Kajda-Szcześniak, M 2013. Evaluation of the basic properties of the wood waste and wood based wastes. Archives of Waste Management and Environmental Protection 15(1), 1-10.
 
17.
Kim, MH and Song, HB 2014. Analysis of the global warming potential for wood waste recycling systems. Journal of Cleaner Production 69, 199-207. Doi: Doi.org/10.1016/j.jclepro.2014.01.039.
 
18.
Kosior-Kazberuk, M and Lelusz, M 2010. Evaluation of ash from simultaneous combustion of biomass and coal as a component of cement composites (Ocena popiołu pochodzącego z jednoczesnego spalania biomasy i węgla jako składnika kompozytów cementowych). Materiały Ceramiczne /Ceramic Materials/ 62(2), 166-170.
 
19.
Krewer, G, Ruter, J, Scott NeSmith, D, Clark, J, Otts, T, Scarborough, S and Mullinix, B 2002. Performance of low cost organic materials as blueberry substrates and soil amendments. Acta Hort. 574, 273-279. Doi: 10.17660/ActaHortic.2002.574.41.
 
20.
Krook, J, Martensson, A and Eklund, M 2006. Sources of heavy metal contamination in Swedish wood waste used for combustion. Waste Management 26(2), 158-166. Doi: Doi.org/10.1016/j.wasman.2005.07.017.
 
21.
Kulesza, W 1994. Effect of habitat and soil mulching with bark on strawberry yield in the second year of plantation use (Wpływ siedliska oraz mulczowania gleby korą na plonowanie truskawek w drugim roku użytkowania plantacji). W: XXXIII Ogólnop. Konf. Nauk. Sad., 330-332.
 
22.
Kurowska, A 2016. Waste wood supply structure in Poland (Struktura podaży odpadów drzewnych w Polsce). Sylwan 160(3), 187−196.
 
23.
MacFarlane, DW 2009. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A. Biomass and Bioenergy 33(4), 628-634. Doi: https://doi.org/10.1016/j.biom....
 
24.
Mazur, K and Filipek-Mazur, B 2001. Fertilizer value of composts and vermicomposts from vegetable waste and industrial and municipal wastewater sludge (Wartość nawozowa kompostów i wermikompostów z odpadów roślinnych oraz osadów ścieków przemysłowych i komunalnych). Materiały konferencji nt. „Kompostowanie odpadów–dobry interes czy uciążliwa konieczność “ która odbyła się w Osieczanach k. Krakowa w dniach 19-21 września 2001r. (< http://www.zb.eco.pl/inne/komp.... (18.06.2022)>).
 
25.
Mazur, T 2000. Agricultural disposal of solid organic waste (Rolnicza utylizacja stałych odpadów organicznych). Zesz Probl. Post. Nauk Rol. 472, 507-516.
 
26.
McKeever, DB. 2004. Inventories of woody residues and solid wood waste in the United States, 2002. In The Ninth International Conference on Inorganic-Bonded Composite Materials Conference, October 10-13, 2004... Vancouver, British Columbia, Canada: University of Idaho, 12 pages.
 
27.
Niedźwiecki, E, Protasowicki, M, Meller, E, Malinowski, R and Sammel A 2009. Content of potassium and magnesium in organic soils and meadow vegetation of Szczecin Pomerania. Journal of Elementology 14(2), 331-340.
 
28.
Niedźwiecki, E, Protasowicki,., Nowak, A, Czyż, H, Ciereszko, W and Meller, E 1999. Characteristics of potash waste in terms of management options (Charakterystyka odpadów potartacznych w aspekcie możliwości ich zagospodarowania). Folia Universitatis Agriculturae Stetinensis, Agricultura 200(77), 295-298.
 
29.
Ochmian, I, Malinowski, R, Kubus, M, Malinowska, K, Sotek, Z and Racek, M 2019. The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Scientia Horticulturae 257, 108690. Doi: https://doi.org/10.1016/j.scie....
 
30.
Ogunwusi, A 2014. Wood waste generation in the forest industry in Nigeria and prospects for its industrial utilization. Civil and Environmental Research 6(9), 62-69.
 
31.
Piekarczyk, M 2013. The content of bioavailable forms of some macro- and micronutrients in light soil fertilized with winter wheat straw ash (Zawartość przyswajalnych form niektórych makro-i mikroelementów w glebie lekkiej nawożonej popiołem ze słomy pszenicy ozimej). Fragm. Agron. 30(1), 92–98.
 
32.
Schiemenz, K and Eichler-Lobermann, B 2010. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutrient Cycling in Agroecosystems 87, 471-482. Doi: https://doi.org/10.1007/s10705....
 
33.
Serafimova, Ek, Mihailova, I. and Pelovski, Y 2011. Study on the characteristics of waste wood ash. Journal of University of Chemical Technology and Mettallurgy 46(1), 31-34.
 
34.
Shiralipour, A, McConnellm DB and Smith WH 1992. Uses and benefits of MSW compost: a review and assessment. Biomass and Bioenergy 3(3-4), 267-279. Doi: https://doi.org/10.1016/0961-9....
 
35.
Siuta, J 1996. Resources and natural uses of organic waste (Zasoby i przyrodnicze użytkowanie odpadów organicznych). Zeszyty Problemowe Postępów Nauk Rolniczych 437, 23-30.
 
36.
Siwek,, Sobolewska, M, Hury, G and Gibczyńska M 2017. Effect of fertilization with biomass ash, lime and gypsum on the quality characteristics of grain, flour and dough of spring wheat of Zura variety (Wpływ nawożenia popiołem z biomasy, wapnem i gipsem na cechy jakościowe ziarna, mąki i ciasta z pszenicy jarej odmiany Żura). Ecological Engineering 18(4), 161–167. Doi: 10.12912/23920629/74952.
 
37.
Szostak, A and Ratajczak, E 2003. Wood waste resources in Poland (industrial waste, post-consumer waste) (Zasoby odpadów drzewnych w Polsce (odpady przemysłowe, odpady poużytkowe)). Czysta energia 6, 21-22.
 
38.
Szulc, W, Rutkowska, B and Stępień, W 2007. Assessing the suitability of wood industry waste for fertilizer application (Ocena przydatności odpadów przemysłu drzewnego do nawożenia). Zesz. Probl. Post. Nauk Rol. 518, 185-192.
 
39.
Van Eijk, R J, Obernberger, I and Supancic, K 2012. Options for increased utilization of ash from biomass combustion and co-firing. Report, KEMA Nederland B.V., Arnhem, the Netherlands, 39. (< http://www.ieabcc.nl/publicati... (19.08. 2016)>).
 
40.
Wacławowicz, R 2012. Effect of ashes from biomass burning on infestation of spring wheat with Gaeumannomyces graminis (Wpływ popiołów pochodzących ze spalenia biomasy na porażenie pszenicy jarej Gaeumannomyces graminis). Postęp w Ochronie Roślin 52(2), 397-400.
 
41.
Wasiak, G and Mamełka, D 1999. Composting of organic fraction selected from municipal waste in Warsaw (Kompostowanie frakcji organicznej wyselekcjonowanej z odpadów komunalnych w Warszawie). In Konf. Nauk. „Kompostowanie i użytkowanie kompostu”. Instytut Ochrony Środowiska. Warszawa, 55-60.
 
42.
Wiater, J 2003. Subsequent effects of organic waste on winter wheat yield and chemical composition (Następcze oddziaływanie odpadów organicznych na plonowanie pszenicy ozimej i jej skład chemiczny). Zesz. Probl. Post. Nauk Rol. 494, 525-532.
 
43.
Wisz, J and Matwiejew, A 2005. Biomass - testing in the laboratory in terms of suitability for energetic combustion (Biomasa - badania w laboratorium w aspekcie przydatności do energetycznego spalania). Energetyka 9, 631-641.
 
44.
Wróblewska, H, Czekała, J and Piotrowska, M 2009. Effect of different wood wastes on the chemical properties of the produced composts (Wpływ różnych odpadów drzewnych na właściwości chemiczne wytworzonych kompostów). Journal of Research and Applications in Agricultural Engineering 54(4), 185-189.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top