ORIGINAL ARTICLE
Comparision of the Effectiveness of Fire-proof Impregnation Methods for Scots Pine Wood Used in Buildings Construction
 
More details
Hide details
1
Polish Wooden Houses Joint Stock Company, Warsaw, Poland
 
 
Submission date: 2024-07-31
 
 
Final revision date: 2024-08-26
 
 
Acceptance date: 2024-09-04
 
 
Online publication date: 2024-09-19
 
 
Publication date: 2024-09-19
 
 
Corresponding author
Mateusz Michał Janiec   

B+R, Polskie Domy Drewniane S. A., Aleje Jerozolimskie, 02-222, Warszawa, Poland
 
 
Civil and Environmental Engineering Reports 2024;34(3):230-245
 
KEYWORDS
TOPICS
ABSTRACT
The fight for a healthy and clean climate forces many restrictive changes to European law. Wooden construction fits very well into these changes, as it is able to store carbon dioxide for years. Unfortunately, many regulations, e.g. fire regulations, still hinder the development of this type of structures in Poland. Wooden elements used that have class D must achieve class B of fire resistance. For this purpose, they are modified with flame retardant agents. Three salt flame retardants based on: 1-phosphorus and iron, 2-phosphorus and nitrogen and 3-ogranic componds including benzoates, were used in the tests. The amount of applied fire retardants was compared depending on the impregnation technology used: surface immersion and pressure, as well as the reaction to fire of impregnated wooden elements. As a result of the tests, no impregnation used improved the fire properties, as shown by a small-scale cone calorimeter test. The project results indicate the need to conduct new basic research on the possibility of permanently improving the fire properties of wooden elements, which would allow the widespread use of wood in construction.
 
REFERENCES (32)
1.
Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’).
 
2.
Proposal for a Regulation of the European Parliament and of the Council on establishing a framework of measures for strengthening Europe’s net-zero technology products manufacturing ecosystem (Net Zero Industry Act), COM/2023/161.
 
3.
Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 establishing a carbon border adjustment mechanism (Text with EEA relevance).
 
4.
Mishra A et all 2022Land Use Change and Carbon Emissions of a Transformation to Timber Cities. Nat. Commun. 2022, 13, 4889.
 
5.
University of Bristish Columbia 2018. Brock Commons Tallwood House, The advent of tall wood structures in Canada, Canadian Wood Council.
 
6.
Wood First Act. https://wood-works.ca/bc/featu... [access: 18.07.2024].
 
7.
Sirociuk, M 2021. We Francji budynki publiczne powstaną w 50% z drewna. https://biznes.interia.pl/gosp... [access: 18.07.2024].
 
8.
Ravenscroft, T 2024. BIG and A+ Architecture set to design mass-timber transport hub in Toulouse. https://www.dezeen.com/2024/03... [access: 18.07.2024].
 
9.
Östman, B 2022. National fire regulations for the use of wood in buildings – worldwide review 2020. Wood Material Science & Engineering. Informa UK Limited, trading as Taylor & Francis Group 17, 2-5.
 
10.
PN-EN 13501-1 Klasyfikacja ogniowa wyrobów budowlanych i elementów budynków – Część 1: Klasyfikacja na podstawie wyników badań reakcji na ogień [Fire classification of construction products and building elements - Part 1: Classification based on the results of reaction to fire tests].
 
11.
Roszkowski, P 2019. Jak zapewnić konstrukcjom drewnianym wymaganą odporność ogniową [How to provide wooden structures with the required fire resistance], Inżynier Budownictwa. Warsaw, Polska Izba Inżynierów Budownictwa sp. z o. o. 1/2019.
 
12.
Sulik P. 2018, Fire spread by wooden elements in construction in polish legislation. Annals of Warsaw Uniwersity of Life Sciences. Warsaw, SGGW, 104, 353-359.
 
13.
Ibrahim, MN et al. 2011. The Development of Fire Risk Assessment Method for Heritage Building. Procedia Engineering. Elsevier, 20, 317-324.
 
14.
Nagrodzka, M and Małozięć, D 2011. Impregnation of the wood by flame retardants, Safety and Fire Technology. Józefów, CNBOP 3, 69-75.
 
15.
Książek, M 2019. Impregnacja tarcicy konstrukcyjnej[Impregnation of structural timber], Inżynier Budownictwa. Warsaw, Polska Izba Inżynierów Budownictwa sp. z o. o. 2/2019.
 
16.
Murat, R 2008. Impregnacja więźby dachowej z drewna [Impregnation of wooden roof trusses]. https://muratordom.pl/budowa/d... [access: 18.07.2024].
 
17.
Karyś, J et al. 2014. Ochrona przed wilgocią i korozją biologiczną w budownictwie [Protection against moisture and biological corrosion in construction]. Warsaw, Medium Grupa.
 
18.
Rudziński, L 2010. Konstrukcje drewniane. Naprawy, wzmocnienia, przykłady obliczeń [Timber structures. Repairs, reinforcements, calculation examples], Kielce Kielce University of Technology 445.
 
19.
Krajewski, A and Witomski, P 2023. Ochrona drewna surowca i materiału [Protection of raw and material wood]. Warsaw SGGW.
 
20.
EAD 350865-00-1106 Fire retardant products, EOTA 2018.
 
21.
Blanchet, P and Pepin, S 2021. Trends in Chemical Wood Surface Improvements and Modifications: A Review of the Last Five Years. Coatings. MDPI 11, 1514, 1-40.
 
22.
EN 14081-1:2016+A1:2019 Timber structures - Strength graded structural timber with rectangular cross section - Part 1: General requirements.
 
23.
PN-EN 14080:2013-07 Timber structures. Glued laminated timber and glued solid timber. Requirements.
 
24.
EAD 130005-00-0304 Solid wood slab element to be used as a structural element in buildings, EOTA 2015.
 
25.
EN 1990:2004 Basis of structural design.
 
26.
EAD 350140-00-1106 Renderings and rendering kits intended for fire resisting applications, EOTA 2017.
 
27.
Östman, B and Tsantaridis, LD 2017. Durability of the reaction to fire performance of fire-retardant-treated wood products in exterior applications – a 10-year report International Wood Products Journal. London, SAGE 8, 1-7.
 
28.
PN-C-04914:2000 Oznaczanie wpływu środków ochrony drewna na zapalność drewna z zastosowaniem kalorymetru stożkowego [Studies on the effect of wood preservatives on wood flammability using a cone calorimeter].
 
29.
Dziurka, D et all 2023. Raport Badania optymalnej ilości naniesienia impregnatu oraz wykonanie próbek do badań w warunkach symulujących produkcję [Report "Research on the optimal amount of impregnation application and preparation of test samples in conditions simulating production"] carried out as part of the project POIR.01.01.01-00-0076/21. Nature University of Poznań.
 
30.
De Angelis, M et all 2022. Influence of Thermal Modification and Impregnation with Biocides on Physical Properties of Italian Stone Pine Wood (Pinus pinea L.). Appl. Sci. 2022, 12, 3801.
 
31.
Wanin S, 1953. Nauka o drewnie teoria i praktyka [Wood science theory and practice]. Warsaw, Wydawnictwo Rolnicze i Leśne.
 
32.
Krzysik F, 1975. Nauka o Drewnie [Wood Science]. Warsaw, PAN.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top