Sustainable development of the built environment in developing countries is a major challenge in the 21st century. The use of local materials in the construction of buildings is one of the potential ways to support sustainable development in both urban and rural areas where burnt clay bricks are used predominantly. This work focuses mainly on the use of polypropylene micro fibers in ordinary Cellular Lightweight Concrete blocks. The main objective is to develop a high-performance fibre reinforced cellular concrete to provide a better alternative than clay bricks for structural applications of masonry. This paper presents the stress-strain behaviour of polypropylene fibre reinforced Cellular Lightweight Concrete stack bonded prisms under axial compression. Masonry compressive strength is typically obtained by testing stack bonded prisms under compression normal to its bed joint. Use of micro-fibres enhances the pre-cracking behaviour of masonry by arresting cracks at micro-scale in the post-peak region. These efforts are necessary to ensure that CLC blocks become more accepted in the world of building materials and considered as a reliable option for providing low-cost housing.
REFERENCES(16)
1.
Satheesh babu, S 2010. Life cycle assessment of cellular lightweight concrete block-a green building material. J. Environ. Technol. Manage, 1554, 69–79.
Zhang, B and Poon, CS 2015. Use of Furnace Bottom Ash for producing lightweight aggregate concrete with thermal insulation properties. Journal of Cleaner Production, 99, 94–100.
Kaushik, HB, Rai, DC and Jain, SK 2007. Stress-Strain Characteristics of Clay Brick Masonry under Uniaxial Compression. Journal of Materials in Civil Engineering, 19, 728–739.
Rasheed, MA and Prakash, SS, 2015. Mechanical behaviour of sustainable hybrid- synthetic fiber reinforced cellular light weight concrete for structural applications of masonry. Construction & Building Materials, 98, 631–640.
Estabrag, AR, Rajbari, S and Javadi, AA 2017. Properties of a Clay Soil and Soil 8 Cement Reinforced with Polypropylene Fibers. ACI Materials Journal, 114, 195–206.
Rasheed, MA and Prakash, SS, 2017. Behavior of Hybrid-Synthetic Fiber Reinforced Cellular Lightweight Concrete under Uni-axial Tension - Experimental and Analytical 20 Studies. Construction and Building Materials.
Wee, TH, Babu DS, Tamilselvan, TLH 2006. Air-void systems of foamed concrete and its effect on mechanical properties. ACI Materials Journal, 103(1), 245–52.
Gumaste, KS, Nanjunda Rao, KS and Venkatarama Reddy, KSJ 2007. Strength and elasticity of brick masonry prisms and wallettes under compression. Materials and Structures, 14, 241–253.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.