The aim of this article is to address the influence of air humidity and testing temperature on the thermal conductivity coefficient (λ) of various thermal insulation materials. This group includes wood-based materials, rock wools, heat-insulating renders, climate boards, and lightweight cellular concretes. These materials are used both indoors and outdoors in buildings. Over the course of several years, data were collected from laboratory tests to determine the thermal conductivity coefficient (λ) in relation to increases in temperature and humidity. The obtained results were compared with values provided by the manufacturers of the insulation materials. The aforementioned research was carried out due to the rather high sorption of most materials and thus the possibility of them becoming humid at high air humidity. Because of the very large difference in the thermal conductivity coefficient of water and air, a relatively small increase in the mass moisture content of the materials results in a loss of insulation.
REFERENCES(13)
1.
Demirboğa, R and Rüstem, G 2003. The Effects of Expanded Perlite Aggregate, Silica Fume and Fly Ash on the Thermal Conductivity of Lightweight Concrete. Cement and Concrete Research 33(5), 723−727.
Ickewicz, I, Sarosiek, W and Ickiewicz, J 2000. Fizyka budowli wybrane zagadnienia (Building physics selected topics). Białystok: Dział Wydawnictw i Poligrafii PB.
Trochonowicz, M and Galas, M 2018. Influence of air humidity and temperature on thermal conductivity of wood-based materials. Budownictwo i Architekruta, 17, 77-86.
o niskiej gęstości do dociepleń wewnętrznych (Investigating the feasibility of using low-density cellular concrete for interior thermal insulation). In: Franus, W (ed), Trochonowicz, M (ed) Czas inżynierów (Engineers' time). Politechnika Lubelska, 147-155.
Trochonowicz, M, Szostak, B and Hendzel, P 2022. Wpływ wilgotności powietrza i temperatury na współczynnik przewodzenia ciepła tynków perlitowych (Influence of humidity and temperature on the thermal conductivity coefficient of perlite plasters). Teka Komisji Architektury, Urbanistyki.
Trochonowicz, M, Witek, B and Chwiej, M 2013. Impact analysis of humidity and temperature on the value of thermal conductivity λ coefficient of insulating materials used inside buildings. Budownictwo i Architektura, 12, 165-176,.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.