ORIGINAL ARTICLE
Experimental Study on the Durability Characteristics of Several Vegetable Fiber Reinforced Concretes Exposed to Sodium Sulfate
 
More details
Hide details
1
Laboratory of Soil Mechanics and structures (LMSS), Dept. of Civil Engineering, Faculty of Science and Technology, University of Mentouri Brothers Constantine 1, Constantine, Algeria
 
2
Department of Civil Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
 
3
Departments of Geography and Land Sciences, University of Mentouri Brothers Constantine1, Constantine, Algeria
 
4
Department of Civil Engineering, Ferhat Abbas Sétif University 1, Sétif, Algeria
 
 
Online publication date: 2021-03-30
 
 
Publication date: 2021-03-01
 
 
Civil and Environmental Engineering Reports 2021;31(1):1-28
 
KEYWORDS
ABSTRACT
Recently, numerous plant fibers have been investigated as a means to reinforce concrete and replace synthetic fibers, thereby producing more eco-friendly concretes. The primary concern for these studies is the durability of the fibers in the external environment. For this purpose, the current paper presents a comparison study on the physical-mechanical behavior and durability against external sulfatic attack on Alfa and Hemp fiber-reinforced concrete. To assess the effects of sulfatic attack, different types of concrete underwent two aging protocols: 1) a complete immersion in 12.5 % Sodium Sulfate (Na2SO4) solution and, 2) an accelerated aging protocol which consisted of immersion/drying in the same sulfate solution at a temperature of 60°C. The results show that the optimal amount of plant fiber is variable, depending on several parameters such as the chemical composition, mechanical characteristics, and morphology of the fiber. In addition, the results show that the use of Alfa and hemp fibers could facilitate the production of green and durable structural concretes.
REFERENCES (47)
1.
Mahdikhani, M, Bamshad, O and Shirvani, MF 2018. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition. Construction and building materials 167, 929-935.
 
2.
Mohammadhosseini, H, Tahir, MM, Sam, ARM, Lim, NHAS and Samadi, M 2018. Enhanced performance for aggressive environments of green concrete composites reinforced with waste carpet fibres and palm oil fuel ash. Journal of cleaner production 185, 252-265.
 
3.
El-Hachem, R, Rozière, E, Grondin, F and Loukili, A 2012. New procedure to investigate external sulphate attack on cementitious materials, Cement and Concrete Composites 34(3), 357-364.
 
4.
Alyami, MH, Alrashidi, RS, Mosavi, H, Almarshoud, MA and Riding, KA 2019. Potential accelerated test methods for physical sulfate attack on concrete. Construction and Building Materials 229, 116920.
 
5.
Mezhoud, S, Clastres, P, Houari, H and Belachia, M 2018. Field Investigations on Injection Method for Sealing Longitudinal Reflective Cracks. Journal of Performance of Constructed Facilities 32(4), 04018041.
 
6.
Mezhoud, S, Clastres, P, Houari, H and Belachia, M 2017. Forensic investigation of causes of premature longitudinal cracking in a newly constructed highway with a composite pavement system. Journal of Performance of Constructed Facilities 31(2), 04016095.
 
7.
Çavdar, A 2014. Investigation of freeze–thaw effects on mechanical properties of fiber reinforced cement mortars. Composites Part B: Engineering 58, 463-472.
 
8.
Çomak, B, Bideci, A and Bideci, ÖS 2018. Effects of hemp fibers on characteristics of cement based mortar. Construction and Building Materials 169, 794-799.
 
9.
Xie, X, Zhou, Z, Jiang, M, Xu, X, Wang, Z and Hui, D 2015. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B: Engineering 78, 153-161.
 
10.
Ferreira, S. R, Pepe, M, Martinelli, E, de Andrade Silva, F and Toledo Filho, R. D 2018. Influence of natural fibers characteristics on the interface mechanics with cement based matrices. Composites Part B: Engineering 140, 183-196.
 
11.
El Achaby, M, Kassab, Z, Barakat, A and Aboulkas, A 2018. Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Industrial Crops and Products 112, 499-510.
 
12.
Page, J, Khadraoui, F, Boutouil, M and Gomina, M 2017. Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials 140, 344-353.
 
13.
Sellami, A, Merzoud, M and Amziane, S 2013. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Construction and Building Materials 47, 1117-1124.
 
14.
Kriker, A, Debicki, G, Bali, A, Khenfer, M. M and Chabannet, M 2005. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites 27(5), 554-564.
 
15.
Achour, A, Ghomari, F and Belayachi, N 2017. Properties of cementitious mortars reinforced with natural fibers. Journal of adhesion science and Technology 31(17), 1938-1962.
 
16.
Sudin, R and Swamy, N 2006. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. Journal of materials science 41(21), 6917-6924.
 
17.
Marrakchi, Z, Khiari, R, Oueslati, H, Mauret, E and Mhenni, F 2011. Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima) effects of refining process. Industrial Crops and Products 34 (3), 1572-1582.
 
18.
Imane, M, Khelifa, MR and Mezhoud, S 2020. Impact of Elevated Temperature on the Properties of Concretes Reinforced with Alfa Fiber. Civil and Environmental Engineering Reports 30(3), 161-185.
 
19.
Shahzad, A 2012. Hemp fiber and its composites–a review. Journal of Composite Materials 46(8), 973-986.
 
20.
Florentin, Y, Pearlmutter, D, Givoni, B and Gal, E 2017. A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials. Energy and Buildings 156, 293-305.
 
21.
Khelifa, MR 2009. Effet de l’attaque sulfatique externe sur la durabilité des bétons autoplaçants, Thèse de doctorat en Génie Civil. Ecole Polytechnique de l’Université d’Orléans.
 
22.
Molez, L, Bian, H and Prince-Agbodjan, W 2012. Résistance au gel/dégel des BFUHP: compétition entre endommagement et cicatrisation. Chambéry, Savoie: XXXe Rencontres de l’AUGC-IBPSA.
 
23.
Khelifa, MR, Leklou, N, Bellal, T, Hebert, RL and Ledesert, BA 2018. Is alfa a vegetal fiber suitable for making green reinforced structure concrete?. European Journal of Environmental and Civil Engineering 22(6), 686-706.
 
24.
Dallel, M 2012. Evaluation du potentiel textile des fibers d’Alfa - (Stipa Tenacissima L.) : Caractérisation physico-chimique de la fiber au fil [Evaluation of potential textile fiber Alfa - (Stipa tenacissima): Physicochemical characterization of the fiber over, PhD Thesis. Haute Alsace University, Mulhouse.
 
25.
Maghchiche, A, Haouam, A and Immirzi, B 2013. Extraction and characterization of Algerian Alfa grass short fibers (Stipa Tenacissima). Chemistry & Chemical Technology (7,№ 3), 339-344.
 
26.
Sedan, D, Pagnoux, C, Smith, A and Chotard, T 2008. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society 28(1), 183-192.
 
27.
NF EN 197-1 2000. Cement - part 1: Compositions. Specifications and conformity criteria for common cement. Brussels: European Committee for Standardization.
 
28.
NF EN934-2 2012. Adjuvants pour bétons, mortier et coulis - Partie 2: adjuvants pour béton - Définitions, exigences, conformité, marquage et étiquetage.
 
29.
NF EN 12350-2 Avril 2012. Essais pour béton frais - Partie 2: essai d’affaissement Testing fresh concrete - Part 2: Slump test], in french.
 
30.
NF P15-471 Essais des Bétons – Essais Destructifs, Norme Française homologuée.
 
31.
NF P 18-414 1993. Essais des Bétons – Essais Non Destructifs. Mesure de la Fréquence de Résonance Fondamentale [Testing of concrete - non-destructive testing - Measurement of the fundamental resonance frequency]. French: AFNOR.
 
32.
AFPC-AFREM 1997. Recommended methods for measuring of durability parameters. Proceedings of the technical AFCP/AFREM days on concrete durability, Toulouse (pp. 125–134). 11 and 12 December.
 
33.
Ghrici, M, Kenai, S and Meziane, E 2006. Mechanical and durability properties of cement mortar with Algerian natural pozzolana. Journal of Materials Science 41(21), 6965-6972.
 
34.
Kevin, B 2006. Etude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité, Thèse de doctorat en Sciences des Matériaux. Université d’Orléans.
 
35.
Brunetaud, X 2005. Etude de l’influence des différents paramètres et leurs interactions sur la cinétique et l’amplitude de la réaction sulfatique interne au béton, Thèse de doctorat en Physico-chimie des Matériaux. Ecole Centrale de Paris.
 
36.
Brunetaud, X, Linder, R, Divet, L, Duragrin, D and Damidot, D 2007. Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation. Materials and Structures 40(6), 567-578.
 
37.
Lane, DS and Ozyildirim, HC 1999. Evaluation of the potential for internal sulfate attack through adaptation of ASTM C 342 and the Duggan test. Cement, Concrete and aggregates 21(1), 43-58.
 
38.
Ziane, S, Khelifa, MR and Mezhoud, S 2020. A study of the durability of concrete reinforced with hemp fibers exposed to external Sulfatic attack. Civil and Environmental Engineering Reports 30(2), 158-184.
 
39.
Magniont, C 2010. Contribution to the formulation and characterization of an eco-building material based on agricultural resources, PhD Thesis in Civil Engineering. Toulouse. Toulouse University.
 
40.
Khan, M, Rehman, A and Ali, M 2020. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Construction and Building Materials 244, 118382.
 
41.
Ramaswamy, HS, Ahuja, BM and Krishnamoorthy, S 1983. Behaviour of concrete reinforced with jute, coir and bamboo fibres. International Journal of Cement Composites and Lightweight Concrete 5(1), 3-13.
 
42.
Wei, J and Meyer, C 2015. Degradation mechanisms of natural fiber in the matrix of cement composites. Cement and Concrete Research 73, 1-16.
 
43.
de Andrade Silva, F, Toledo Filho, RD, de Almeida Melo Filho, J and Fairbairn, EDMR 2010. Physical and mechanical properties of durable sisal fiber–cement composites. Construction and building materials 24(5), 777-785.
 
44.
Morlier, P and Khenfer, M 1991. Effect of the length of fibers on the mechanical-properties of cements reinforced with cellulosic fibers. Materials and structures 24(141), 185-190.
 
45.
Ziane, S, Khelifa, MR, Mezhoud, S and Medaoud, S 2020. Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses. Asian Journal of Civil Engineering 21(3), 555-567.
 
46.
John, MJ and Anandjiwala, RD 2008. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer composites 29(2), 187-207.
 
47.
Al-Dulaijan, SU, Maslehuddin, M, Al-Zahrani, MM, Sharif, AM, Shameem, M and Ibrahim, M 2003. Sulfate resistance of plain and blended cements exposed to varying concentrations of sodium sulfate. Cement and Concrete Composites 25(4-5), 429-437.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top