ORIGINAL ARTICLE
Geopolymers in Construction / Zastosowanie Geopolimerów W Budownictwie
 
More details
Hide details
1
Poznan University of Technology, Department of Civil and Environmental Engineering, Poland
 
2
Koszalin University of Technology Department of Civil, Environmental Engineering and Geodesy, Poland
 
 
Publication date: 2023-06-12
 
 
Civil and Environmental Engineering Reports 2015;16(1):25-40
 
KEYWORDS
ABSTRACT
Within the framework of quests of supplementary and „healthier” binders to the production of concrete followed the development of geopolymers in construction. However the practical application of these materials is still very limited. The production of each ton of cement introduces one ton of CO2 into the atmosphere. According to various estimations, the synthesis of geopolymers absorbs 2-3 times less energy than the Portland cement and causes a generation of 4-8 times less of CO2. Geopolymeric concretes possess a high compressive strength, very small shrinkage and small creep, and they possess a high resistance to acid and sulphate corrosion. These concretes are also resistant to carbonate corrosion and possess a very high fire resistance and also a high resistance to UV radiation.
 
REFERENCES (28)
1.
Davidovits J.: Why the pharaohs built the Pyramids with fake stones, éd. J-C Godefroy, Paris, 2002.
 
2.
Davidovits J.: Geopolymer Chemistry and Applications, éd. J-C Godefroy, France, 2008.
 
3.
Metha P. K.: Reducing the environmental impact of concrete, ACI Concrete International, 23, 10, (2001) 61-66.
 
4.
Malhotra V. M.: Making concrete ‘greener’ with fly ash, ACI Concrete International, 21, (1999) 61-66.
 
5.
Malhotra V. M.: Introduction: Sustainable development and concrete technology, ACI Board Task Group on Sustainable Development, ACI Concrete International, 24, 7, (2002) 22.
 
6.
Król M., Błaszczyński T.: Ekobetony geopolimerowe, Materiały Budowlane, 11, (2013) 23-26.
 
7.
Błaszczyński T., Król M.: Beton a problem redukcji emisji dwutlenku węgla, Izolacje, 3, (2014) 28-30.
 
8.
Błaszczyński T., Król M.: Durability of Green-Concretes, Proceedings of 8th International Conference AMCM 2014, Wrocław, Poland, (2014) 530-540.
 
9.
Błaszczyński T.: Betonowe cuda, XXV Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Szczyrk, Tom I, (2010) 1-41.
 
10.
Davidovits, J.: Soft Mineralurgy and Geopolymers, Proceeding of Geopolymer 88 International Conference, Université de Technologie, Compiègne, France, 1988.
 
11.
Koloušek D., Brus J., Urbanova M., Andertova J., Hulinsky V., Vorel J.: Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers, Journal of Material Science, 22, (2007) 9267-9275.
 
12.
Singh P.S., Bastow T., Trigg M.: Outstanding problems posed by nonpolymeric particulates in the synthesis of a well-structured geopolymeric material, Cement and Concrete Research, 10, (2004) 1943-1947.
 
13.
Davidovits, J.: Chemistry of geopolymer systems, terminology, Proceedings of Geopolymer ‘99 International Conferences, France, 1999.
 
14.
Kriven W. M., Bell J. L., Gordon M., Mallicoat S.: Microstructure and Microchemistry of Fully Reacted Geopolymers and Geopolymer Matrix Composites, Ceramic Transactions, 153, (2003) 227-252.
 
15.
Davidovits J.: The state of the Geopolimer R&D, The GeopolymerCamp 2011 Conferences, Université de Picardie, Saint-Quentin, France 2011.
 
16.
Davidovits J.: The state of the Geopolimer, The GeopolymerCamp 2010Conferences, Université de Picardie, Saint-Quentin, France 2010.
 
17.
Škvára F., Doležal J., Svoboda P., Kopecký L., Pawlasová S., Lucuk M., Dvořáček K., Beksa M., Myšková L., Šulc R.: Concrete based on fly ash geopolymers, IBAUSIL, Weimar 2006.
 
18.
Kurdowski W.: Chemia cementu i betonu, Polski Cement Sp. z o.o., Wydawnictwo Naukowe PWN, 2010.
 
19.
Hardjito D., Wallah S. E., Sumajow D. M. J., Rangan B.: On the development of fly ash based geopolymer concrete, ACI Material Journal, 101, 6, (2005) 467-172.
 
20.
Błaszczyński T., Łowińska-Kluge A.: Experimental investigations and assessment of damages in the case of swimming-pool repairs, Archives of Civil and Mechanical Engineering, 1, (2007) 5-20.
 
21.
GuptaS.: Strength of Flyash Based Geopolymer Concrete, National University of Singapore, 2009.
 
22.
Błaszczyński T., Wolek E.: Modyfikowane cementowe betony drogowe w przypadku obciążenia statycznego i cyklicznie zmiennego, IV Międzynarodowa Konferencja Naukowo -Techniczna „Nowoczesne Technologie w Budownictwie Drogowym”, Poznań, 2009.
 
23.
Kaps Ch.: Geopolymer Formation via Metaclays and using Ferrihydrite, The GeopolymerCamp 2010 Conferences, Université de Picardie, Saint- Quentin, France 2010.
 
24.
Hardjito D. and Rangan, B. V.: Development and Properties of Low- Calcium Fly Ash-based Geopolymer Concrete, Research Report GC-1, Faculty of Engineering, Curtin University of Technology, Perth, Australia, 2005.
 
25.
Wallah S.E. and Rangan, B.V.: Low-Calcium Fly Ash-Based Geopolymer Concrete: Long-Term Properties, Research Report GC2, Faculty of Engineering. Curtin University of Technology, Perth, Australia, 2006.
 
26.
Cheng, T. W. and Chiu J.P.: Fire-resistant Geopolymer Produced by Granulated Blast Furnace Slag, Minerals Engineering, 3, (2003) 205-210.
 
27.
Balaguru, P. N., Kurtz, S., Rudolph J.: Geopolymer for Repair and Rehabilitation of Reinforced Concrete Beams, The State University of New Jersey Rutgers, Geopolymer Institute, research Report No 5, 1997.
 
28.
Sumajouw M. D.J., Rangan B. V.: Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns, Research Report GC 3, Faculty of Engineering, Curtin University of Technology, Perth, Australia, 2006.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top