ORIGINAL ARTICLE
Impact of Elevated Temperature on the Properties of Concretes Reinforced with Alfa Fiber
 
More details
Hide details
1
Laboratory of Soil Mechanics and structures (LMSS), Dept. of Civil Engineering, Faculty of Science and Technology, University of Mentouri Brothers Constantine 1, Constantine, Algeria
 
2
Department of Civil Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
 
3
Department of Geography and Land Sciences, University of Mentouri Brothers Constantine1, Constantine, Algeria
 
 
Online publication date: 2020-11-09
 
 
Publication date: 2020-09-01
 
 
Civil and Environmental Engineering Reports 2020;30(3):161-185
 
KEYWORDS
ABSTRACT
Alfa fiber reinforced concretes are not used to their full potential due to the limited information on their properties, especially in more severe environments. In this study, the effects of elevated temperature on the properties of concretes reinforced with Alfa fiber were analyzed. The influence of fiber length on reinforced concretes is mainly investigated. For this purpose, five types of structural concretes were formulated; two types of concrete reinforced with 1% Alfa fiber volume using two different fiber lengths of 20 mm and 30 mm (AC-20, and AC-30), and three control concretes, two polypropylene fiber reinforced concretes (PC) using the same fiber length (PC-20, PC-30), and one ordinary concrete (OC). The results showed that with the increase of temperature, the mechanical performance decreased and the porosity rose continually for all mixtures. However, the use of Alfa fiber with a length of 20 mm showed the optimal results in terms of compressive and tensile strength, even at temperatures of 600°C. This finding suggests that Alfa vegetable fiber can be used to produce more sustainable concretes with acceptable mechanical properties compared to the use of polypropylene fiber, even under severe conditions of elevated temperature.
 
REFERENCES (47)
1.
Ali, M, Li, X, and Chouw, N 2013. Experimental investigations on bond strength between coconut fibre and concrete. Materials & Design, 44, 596-605.
 
2.
Ardanuy, M, Claramunt, J, García-Hortal, JA and Barra, M 2011. Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose, 18(2), 281-289.
 
3.
Bahloul, O, Bourzam, A and Bahloul, A 2009. Utilisation des fibres végétales dans le renforcement de mortiers de ciment (cas de l’alfa). In 1st International Conference on Sustainable Built Environment Infrastructures in Developing Countries, ENSET Oran.
 
4.
Bazant, ZP, Kaplan, MF and Haslach, HW 1997. Concrete at high temperatures: material properties and mathematical models. Appliedmechanicsreviews, 50, B75-B75.
 
5.
Brahim, SB and Cheikh, RB 2007. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Composites Science and Technology, 67(1), 140-147.
 
6.
Dallel, M 2012. Evaluation du potentiel textile des fibres d’Alfa (Stipa Tenacissima L.) : Caractérisation physico-chimique de la fibre au fil (Doctoral dissertation).
 
7.
De Almeida Melo Filho, J, De Andrade Silva, F and Toledo Filho, RD 2013. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites, 40, 30-39.
 
8.
Do Thi, VV 2011. Matériaux composites à fibres naturelles/polymère biodégradables ou non (Doctoral dissertation).
 
9.
Dreux, G and Festa, J 1998. Nouveau guide du béton et de ses constituants.8th edition, Eyrolles, Paris, France.
 
10.
Dügenci, O, Haktanir, T and Altun, F 2015. Experimental research for the effect of high temperature on the mechanical properties of steel fiber-reinforced concrete. Constr. Build. Mater. 75, 82-88.
 
11.
Hager, I 2004. Comportement à haute température des bétons à haute performance: évolution des principales propriétés mécaniques (Doctoral dissertation, École nationale des ponts et chaussées (France)).
 
12.
Handoo, SK, Agarwal, S and Agarwal, SK 2002. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cement and Concrete Research, 32(7), 1009-1018.
 
13.
Jarabo, R, Fuente, E, Monte, MC, Savastano Jr, H, Mutjé, P and Negro, C 2012. Use of cellulose fibers from hemp core in fiber-cement production. Effect on flocculation, retention, drainage and product properties. Industrial Crops and Products, 39, 89-96.
 
14.
Joseph, PV, Joseph, K, Thomas, S, Pillai, CKS, Prasad, VS, Groeninckx, G and Sarkissova, M 2003. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 34(3), 253-266.
 
15.
Khelifa, MR 2017. Formulation et caractérisation d’éco-bétons renforcés aux fibres d’alfa pour des bâtiments verts et durables (Doctoral dissertation, Cergy-Pontoise).
 
16.
Khelifa, MR, Leklou, N, Bellal, T, Hebert, RL and Ledesert, BA 2018. Is alfa a vegetal fiber suitable for making green reinforced structure concrete?. European Journal of Environmental and Civil Engineering, 22(6), 686-706.
 
17.
Kim, J and Lee, GP 2015. Evaluation of mechanical properties of steel-fibre-reinforced concrete exposed to high temperatures by double-punch test. Construction and Building materials, 79, 182-191.
 
18.
Kriker, A, Debicki, G, Bali, A, Khenfer, MM and Chabannet, M 2005. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement and Concrete Composites, 27(5), 554-564.
 
19.
Li, M, Qian, C and Sun, W 2004. Mechanical properties of high-strength concrete after fire. Cement and concrete research, 34(6), 1001-1005.
 
20.
Liu, MY, Lin, ZW, Ding, QJ and Hu, SG 2007. Study on the Properties of High Performance Concrete with Different Content Polypropylene Fiber After High Temperature [J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2.
 
21.
Ma, Q, Guo, R, Zhao, Z, Lin, Z and He, K 2015. Mechanical properties of concrete at high temperature—A review. Construction and Building Materials, 93, 371-383.
 
22.
Maghchiche, A, Haouam, A and Immirzi, B 2013. Extraction and characterization of Algerian Alfa grass short fibers (StipaTenacissima). Chemistry & Chemical Technology, (7, № 3), 339-344.
 
23.
Martins, MA and Joekes, I 2003. Tire rubber–sisal composites: Effect of mercerization and acetylation on reinforcement. Journal of appliedpolymer science, 89(9), 2507-2515.
 
24.
NF P18-459. Mars 2010. Béton - Essai pour béton durci - Essai de porosité et de masse volumique.
 
25.
NFP 18-451. 2007. Consistance et Ouvrabilité des bétons a l’aide du Cône d’Abrams.
 
26.
Noumowe, A. 1995). Effet de hautes températures (20-600°C) sur le béton: cas particulier du béton a hautes performances (Doctoral dissertation, Lyon, INSA).
 
27.
Noumowe, A 2005. Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200°C. Cement and concrete research, 35(11), 2192-2198.
 
28.
Ouajai, S and Shanks, RA 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymerdegradation and stability, 89(2), 327-335.
 
29.
Page, J 2017. Formulation et caractérisation d’un composite cimentaire biofibré pour des procédés de construction préfabriquée (Doctoral dissertation).
 
30.
Pliya, P 2010. Contribution des fibres de polypropylène et métalliques à l’amélioration du comportement du béton soumis à une température élevée. Cergy: Thèse de doctorat de l’Université de Cergy-Pontoise.
 
31.
Razafinjato, RN 2015. Comportement des bétons à haute température : influence de la nature du granulat (Doctoral dissertation).
 
32.
Rokbi, M and Osmani, H 2011. L’effet des traitements de surface des fibres sur les propriétés mécaniques de composites Polyester-fibres Alfa. In Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc, 92400 Courbevoie, France.
 
33.
Sedan, D, Pagnoux, C, Smith, A and Chotard, T 2007. Propriétés mécaniques de matériaux enchevêtrés à base de fibre de chanvre et matrice cimentaire. In Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc-92400 Courbevoie.
 
34.
Sedan, D, Pagnoux, C, Smith, A and Chotard, T 2008. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society, 28(1), 183-192.
 
35.
Sellami, A, Merzoud, M and Amziane, S 2013. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Construction and Building Materials, 47, 1117-1124.
 
36.
Serrano, R, Cobo, A, Prieto, MI and de las Nieves González, M 2016. Analysis of fire resistance of concrete with polypropylene or steel fibers. Construction and building materials, 122, 302-309.
 
37.
Söylev, TA and Özturan, T 2014. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Construction and Building materials, 73, 67-75.
 
38.
TolêdoFilho, RD, Scrivener, K, England, GL and Ghavami, K 2000. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement and concrete composites, 22(2), 127-143.
 
39.
Xie, X, Zhou, Z, Jiang, M, Xu, X, Wang, Z and Hui, D 2015. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B: Engineering, 78, 153-161.
 
40.
Xing, Z 2011. Influence de la nature minéralogique des granulats sur leur comportement et celui du béton à haute température (Doctoral dissertation).
 
41.
Xing, Z, Beaucour. AL, Hebert, R, Noumowe, A and Ledesert, B 2015. Aggregate’s influence on thermophysical concrete properties at elevated temperature, Constr. Build. Mater. 95 18–28.
 
42.
Yang, H, Yan, R, Chen, H, Lee, DH and Zheng, C 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
 
43.
Yermak, N, Pliya, P, Beaucour, AL, Simon, A and Noumowé, A 2017. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Construction and Building Materials, 132, 240-250.
 
44.
Ziane, S, Khelifa, MR, Mezhoud, S and Medaoud, S 2020. Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses. Asian Journal of Civil Engineering, 21(3), 555-567.
 
45.
Mezhoud, S, Clastres, P, Houari, H and Belachia, M 2017. Forensic investigation of causes of premature longitudinal cracking in a newly constructed highway with a composite pavement system. Journal of Performance of Constructed Facilities, 31(2), 04016095.
 
46.
Mezhoud, S, Clastres, P, Houari, H and Belachia, M 2018. Field Investigations on Injection Method for Sealing Longitudinal Reflective Cracks. Journal of Performance of Constructed Facilities, 32(4), 04018041.
 
47.
Le Hoang, T 2013. Etude de caractérisation du comportement de composites cimentaires incorporant des fibres courtes de lin (Doctoral dissertation, Caen).
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top