ORIGINAL ARTICLE
Impeller Radial Velocity and Air Flow Rate Influence on Copper Rougher Flotation Recovery
 
More details
Hide details
1
KGHM Robinson Mine, 4232 West White Pine County Rd. 44, Ruth, NV 89319 USA
 
2
KGHM Robinson Mine, Ruth, Nevada, USA
 
3
KGHM Cuprum Ltd Research&Development Center, Wrocław, Poland
 
 
Online publication date: 2018-07-10
 
 
Publication date: 2018-03-01
 
 
Civil and Environmental Engineering Reports 2018;28(1):40-53
 
KEYWORDS
ABSTRACT
A rougher flotation study has been done to analyze the effects of copper feed mineralogy, air flow rate and impeller radial velocity on metallurgical performance. During the performance testing the trials were exposed to metallurgical examining and computerised mineral analysis to establish a size-by-size mineralogy. The mineralogical and metallurgical information was compared to the material balance for rougher flotation results. These samples showed that copper recovery optimization should focus on the losses of liberated Cu-minerals and how they are associated with fine particles. The result of variable impeller radial velocity for each flotation cell cascade on metallurgical performance has been explored on a known-sized and an unknown-sized base, to gauge the input from the fine particles. An industrial application is discussed in this paper, and it validates that divergence of the impeller radial velocity and air flow has positive influence on the recovery.
REFERENCES (16)
1.
Bazan B., Kasinska-Pilut E., Garbacki M., Bazan-Krzywoszanksa A.: The influence of copper mineralogy and impeller speed on the Cu recovery of scavengers in KGHM Polska Miedz S.A., International Mineral Engineering Congress 2014 IMEC, Mexico, San Luis Potosi.
 
2.
Bortel R.: Wpływ minerałów ilastych na flotowalność siarczków metali nieżelaznych, Gliwice, Politechnika Śląska 1967.
 
3.
Deglon D. A.: A hydrodynamic investigation of fine particle flotation in a batch flotation cell, University of Cape Town, South Africa 1998 .
 
4.
Doyle F. M., Kelsall G. H., Woods R.: Electrochemistry in Mineral and Metal Processing, VI: Proceedings of the International Symposium, The Electrochemical Society, USA 2003.
 
5.
Greame J., Jameson G.: The effect of surface liberation and particle size on flotation rate constants, Minerals Engineering, Vol 36-38, 10 (2012) 132-137.
 
6.
Grano S.: Effect of impeller rotational speed on the size dependent flotation rate of galena infull scale plant cells, Minerals Engineering 19 (2006) 1307-1318.
 
7.
Grotowski A., Mizera A., Grotowska M.: Możliwości i warunki zagospodarowania odpadów powstających przy eksploatacji i przeróbce rud miedzi, Problemy zagospodarowania odpadów mineralnych, Sekcja Wykorzystania Surowcow Mineralnych Komitetu Górnictwa Polskiej Akademi Nauk, Agencja Gospodarki Odpadami „AGOS” S.A. w Katowicach, (1995) 53-67.
 
8.
Kendrick M., Baum W., Thompson P., Wilkie G., Gottlieb P.: The use of the QemSCAN automated mineral analyzer at the Candelaria concentrator In C.O. Gomez & C.A. Barahona (Eds.), Copper-Cobre 2003, Vol. III: Mineral Processing 2003,415-430.
 
9.
Konieczny A., Bazan B.: Challenges and difficulties of comminution processes in KGHM S.A. Division of Concentrators, MEI Conference - Comminution’12, Cape Town, South Africa, April 2012.
 
10.
Lelinski D., Govender D., Dobrowski B., Traczyk F.: Executive use of energy in the flotation process, The Southern African Institute of Mining and Metallurgy, 6th Southern African Base Metals Conference 2011, pp. (2011) 137-148.
 
11.
Luszczkiewicz A., Wieniewski A.: Kierunki rozwoju technologii wzbogacania rud w krajowym przemyśle miedziowym, Górnictwo I Geoinzynieria, Rok 30, Zeszyt 3/1, AGH Uczelniane Wydawnictwa Naukowo - Dydatktyczne, ISSN: 1732-6702 (2006) 181-196.
 
12.
Massey W.T., Harris M., Deglon D.A.: Investigating the effect of energy input on flotation kinetics in an oscillating grid flotation cell, Minerals Engineering, Vol. 36-38, 10, (2012) 145-151.
 
13.
Potulska A.: Analysis of Fine Particles Behaviour in Flotation of Polish Copper Ores, Copper 2010 GDMB Conference, Hamburg, Germany, vol.7, ISBN 978-3-940276-31-5, (2010) 2859-2872.
 
14.
Puget F. P., Melo M. V., Massarani G.: Modelling of the dispersed air flotation process applied to dairy wastewater treatment, Braz. J. Chem. Eng, vol.21 no.2, São Paulo 2004.
 
15.
Schubert H.: On the optimization of hydrodynamics in fine particle flotation, Minerals Engineering 21, (2008) 930-936.
 
16.
Spalińska B, Stec R., Sztaba K.: Miejsce I rola przeróbki rudy w kompleksie technologicznym KGHM Polska Miedz S.A., In: Monografia KGHM Polska Miedz S.A., Część II, Praca zbiorowa pod redakcja Piestrzynski A., Wyd. KGHM Cuprum CBR, Spolka z o.o., Wroclaw, Lubin, pp. 463-472, 2007.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top