ORIGINAL ARTICLE
Innovative, Modular Building Facades - as a Tool to Counteract The Effects of and to Prevent Climate Change
More details
Hide details
1
Institute of Architecture and Physical Planning, Faculty of Architecture, Poznan University of Technology, Poland
Online publication date: 2023-01-05
Publication date: 2022-12-01
Civil and Environmental Engineering Reports 2022;32(4):184-209
KEYWORDS
ABSTRACT
The paper presents original research, encompassing the results of analyses of modular building façade solutions, as well as innovative design concepts based on these results by students of the Faculty of Architecture at the Poznań University of Technology. Adapting architecture to climate change is the main objective behind research and innovative designs. Reduction of carbon dioxide emissions, thermal comfort of buildings, better thermal environment ergonomics for users of buildings’ interiors, increased energy efficiency together with the use of renewable energy sources are major challenges for today’s designers. Dealing with rainwater, wind and pressure changes are already absolute necessities. Contemporary trends in modern construction in urban areas were identified on the basis of results of analyses of selected existing buildings, presented using tables, graphs and statistical tools. Conclusions from the demonstrated correlations of quantitative data with social, economic and environmental factors became the basis for the students’ conceptual assumptions. The selected innovative façade designs presented in the article demonstrate a variety of solutions for modern modular systems which protect buildings from excessive sun exposure, help insulation resist external factors, generate energy, ventilate buildings, use pressure differences, collect water, purify air, protect fauna, etc. As a result, the developed concepts may be indicative of a contemporary approach to sustainable building design, based not only on reducing any negative environmental impact and conserving natural resources, but also on designing aesthetic buildings based on classic notions of beauty.
REFERENCES (38)
1.
Asanowicz, A 2010. Geneza metodologii projektowania [Genesis of design methodology]. Architecturae et Artibus 2, 6, 11-18.
2.
Babilio, E, Miranda, R. and Fraternali, F 2019. Kinematics and Actuation of Dynamic Sunscreens With Tensegrity. Frontiers in Materials 6, 1-12.
3.
Ball, P 2009. Branches: Nature’s Patterns: A Tapestry in Three Parts, New York: Oxford University Press.
4.
Banasik-Petri, K 2018. Architektura proekologiczna. Rozwiązania artystyczne w zielonej architekturze [Eco-friendly architecture. Artistic solutions in green architecture]. Kraków: Oficyna Wydawnicza AFM Krakowskiej Akademii im. Andrzeja Frycza Modrzewskiego.
5.
Bande, L, Hamad, H, Alqahtani, D, Alnahdi, N, Ghunaim, A, Fikry, F and Alkhatib, O 2022. Design of Innovative Parametric / Dynamic Façade Integrated in the Library Extension Building on UAEU Campus. Buildings 12(8), 1-23.
6.
Barnaś, J 2014. Double-skin façades – the shaping of modern elevations – technology and materials. Czasopismo Techniczne. Architektura 7-A, 5-15.
7.
Bikasa, D, Tsikaloudakia, K, Kontoleona, K, J, Giarmaa, C, Tsokaa, S and Tsirigotia, D 2017. Ventilated Facades: Requirements and Specifications Across Europe. Procedia Environmental Sciences 38, 148-154.
8.
Brilhante, O and Klaas, J 2018. Green City Concept and a Method to Measure Green City Performance over Time Applied to Fifty Cities Globally: Influence of GDP, Population Size and Energy Efficiency. Sustainability 10(6), 1-23.
9.
Chludzińska, M 2010. Komfort cieplny człowieka w warunkach wentylacji indywidualnej w pomieszczeniach biurowych [Human thermal comfort under conditions of individual ventilation in office spaces]. Warszawa: Politechnika Warszawska.
10.
Correia, AL, Murtinho, V and Simões da Silva, L 2019. Modularity in architectural design: Lessons from a housing case. In: Cruz, PJS (ed) Structures and Architecture: Bridging the Gap and Crossing Borders. London: Taylor & Francis, 657-664.
11.
Davies, M 2004. Exploring, rehearsing, delivering. In: Brookes, AJ and Dominique, P (eds) Innovation in Architecture. London and New York: Spon Press, 16-30.
12.
Górecka, M 2008. Architekt i jego rola w procesie projektowania budownictwa ekologicznego na terenach wiejskich [An architect and his role in ecological architecture’s designing process on the rural area]. Przegląd Naukowy. Inżynieria i Kształtowanie Środowiska 17, 1, 54-63.
13.
Hanafi, WHH 2021. Bio-algae: a study of an interactive facade for commercial buildings in populated cities. Journal of Engineering and Applied Science 68, 37, 1-16.
14.
Ingebretsen, SB, Andenæs, E, Gullbrekken, L and Kvande, T 2022. Microclimate and Mould Growth Potential of Air Cavities in Ventilated Wooden Façade and Roof Systems—Case Studies from Norway. Buildings 12(10), 1-23.
15.
ISO 7730, Moderate thermal environments – Determination of the PMV and PPD Indices and specification of the conditions for thermal comfort, Geneva, International standards Organisation, 2005, polish version: PN-EN ISO 7730:2006, Ergonomia środowiska termicznego. Analityczne wyznaczanie i interpretacja komfortu termicznego z zastosowaniem obliczania wskaźników PMV i PPD oraz kryteriów lokalnego komfortu termicznego.
16.
Kamionka, LW 2012. Architektura zrównoważona i jej standardy na przykładzie wybranych metod oceny [Sustainable architecture and its standards on the basis of selected assessments methods]. Monografie, Studia, Rozprawy: M30. Kielce: Wydawnictwo Politechniki Świętokrzyskiej.
17.
Kikrland, D 2004. A process-oriented architecture. In: Brookes, AJ and Dominique, P (eds) Innovation in Architecture. London and New York: Spon Press, 49-66.
18.
Köhler, M 2008. Green facades - a view back and some visions. Urban Ecosystems 11, 424-436.
19.
Koper, A and Patro, M 2016. Ogrody wertykalne jako efektowny element zieleni w krajobrazie zurbanizowanym [Vertical gardens as an eye-catching element of greenery in urban landscape]. Budownictwo i Architektura 5, 3, 145-154.
20.
Mansour, AMH and Al-Dawery, SK 2018. Sustainable self-cleaning treatments for architectural facades in developing countries. Alexandria Engineering Journal 57, 867-873.
21.
Marchwiński, J 2017. Nowoczesne technologie elewacyjne. Materiały typu smart o zmiennych właściwościach - wybrane przykłady [Modern Technologies Within Buildings Elevations. Smart Materials with Changeable Properties - Selected Examples]. Przestrzeń, Ekonomia, Społeczeństwo, 12/2, 193-208.
22.
Maruya, A 2021. Design of Rainwater Harvesting for a Residential Building in Composite Climate. International Journal of Engineering and Technical Research 10, 654-685.
23.
Michalak, H 2016. Modular. Moda i architektura [Modular. Fashion and Architecture], Poznań: Wydział Architektury, Politechnika Poznańska.
24.
Michalak, H 2020. Illusionistic Game of Light – the Art. of Shaping of Realistic Space. In: Kozłowski, T (ed) Defining the Architectural Space - The Truth and Lie of Architecture. Vol. 5. Wrocław: Oficyna Wydawnicza ATUT, Wrocławskie Wydawnictwo Oświatowe, 35-45.
25.
Michalak, H and Suchanek, J 2018. Light as a tool and as a material in architecture. In: Szuba, B and Drewniak, T (eds) Beauty and Architecture. Tradition and Contemporary Trends. Implementations. Nysa: Publishing Office PWSZ, 201-214.
26.
Michalak, H and Suchanek, J 2021. Dynamiczna harmonia w zmodularyzowanej przestrzeni [Dynamic Harmony of Modularized Space]. In: Szuba, B and Drewniak, T (eds) Piękno w architekturze. Harmonia miejsca. Wrocław: PRESSCOM Sp. z o.o., 237-249.
27.
Michalak, H and Suchanek, J 2021. Light in the Interiors of the Urban Landscape. Space & Form, 46, 117-132.
28.
Napier, J 2015. Climate Based Façade Design for Business Buildings with Examples from Central London. Buildings 5(1), 16-38.
29.
Pomaranzi, G, Bistoni, O, Schito, P, Rosa, L and Zasso, A 2021. Wind Effects on a Permeable Double Skin Façade, the ENI Head Office Case Study. Fluids 6, 1-21.
30.
Prandecki, M. Sadowski, K 2010. Międzynarodowa ewolucja ochrony środowiska [International evolution of environmental protection]. Warszawa: LAM Wydawnictwo Akademii Finansów.
31.
Ratajkiewicz, P and Michalak H 2020. Minimalizacja ilości parametrów oświetleniowych przyczyną zubożenia nocnego krajobrazu miast [Minimizing the number of lighting parameters causes landscape depletion in the night view of the cities]. Academic Journals Poznan University of Technology, Electrical Engineering, 104, 119-128.
32.
Seyrek, CI, Widera, B and Woźniczka, A 2021. Sustainability-Related Parameters and Decision Support Tools for Kinetic Green Façades. Sustainability 13(18), 1-16.
33.
Silva, M, Jayasinghe, L, Waldmann, D, and Hertweck, F 2020. Recyclable Architecture: Prefabricated and Recyclable Typologies, Sustainability 12, 1-21.
34.
Śliwińska, E, Nowak, H., Nowak, Ł and Staniec M 2012. Wpływ konstrukcji zacieniającej na komfort cieplny ludzi w budynkach o dużym stopniu przeszklenia [Effect of overhang shading of windows on thermal comfort of people in buildings with high percentage of glazing], Czasopismo Techniczne. Budownictwo 3, 2-B, 415-422.
35.
Vincent, JFV 1997. How pine cones open. Nature 390, 668.
36.
Wehle-Strzelecka, S 2010. Wykorzystanie wzorów przyrody i doświadczeń bioniki w kształtowaniu architektury pozyskującej energię słońca [Nature as a model for solar architecture]. Czasopismo techniczne. Architektura 8-A, 203-211.