ORIGINAL ARTICLE
Measurement Data Processing with the Use of Art Networks
 
More details
Hide details
1
University of Zielona Gora, Zielona Góra, Poland
 
2
University of Technology and Life Sciences in Bydgoszcz, Bydgoszcz, Poland
 
 
Online publication date: 2018-10-16
 
 
Publication date: 2018-06-01
 
 
Civil and Environmental Engineering Reports 2018;28(2):186-195
 
KEYWORDS
ABSTRACT
ART (Adaptive Resonance Theory) networks were invented in the 1990s as a new approach to the problem of image classification and recognition. ART networks belong to the group of resonance networks, which are trained without supervision. The paper presents the basic principles for creating and training ART networks, including the possibility of using this type of network for solving problems of predicting and processing measurement data, especially data obtained from geodesic monitoring. In the first stage of the process of creating a prediction model, a preliminary analysis of measurement data was carried out. It was aimed at detecting outliers because of their strong impact on the quality of the final model. Next, an ART network was used to predict the values of the vertical displacements of points of measurement and control networks stabilized on the inner and outer walls of an engineering object.
REFERENCES (15)
1.
Bielecki A, Wójcik M.: Hybrid system of ART and RBF neural networks for online clustering, Applied Soft Computing 58, pp. 1–10, 2017.
 
2.
Carpenter G.A., Grossberga S.: Adaptive resonance theory: Self-organizing networks for stable learning, recognition and prediction, Handbook of Neural Computation, Bristol 1997.
 
3.
Dudek R.: Przetwarzanie danych w opartych na podobieństwie metodach prognozowania przebiegów dobowych zapotrzebowania na moc elektryczną, Przegląd Elektrotechniczny, no. 9, pp. 15-19, 2006.
 
4.
Howard A., Padgett C., Liege C.: A multi-stage neural network for automatic target detection, International Joint Conference of Neural Networks, Anchorage, Alaska 1998.
 
5.
Kazak J., Świąder M., Szewrański Sz.: GEO-environmental indicators in Strategic Environmental Assessment, acta scientiarum polonorum-formatio circumiectus, Vol. 16 (2), p.123-135, 2017.
 
6.
Korbicz J., Obuchowicz A., Uciński D.: Sztuczne sieci neuronowe. Podstawy i zastosowania, Akademicka Oficyna Wydawnicza PLJ, Warsaw 1994.
 
7.
Li P., Chen B., Li Z., Zheng X., Wu H., Jing L., Lee K.: A Monte Carlo simulation based two-stage adaptive resonance theory mapping approach for offshore oil spill vulnerability index classification, Marine Pollution Bulletin 86, pp. 434–442, 2014.
 
8.
Osowski S.: Sieci neuronowe, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw 1996.
 
9.
Prószyński W., Kwaśniak B.: Podstawy geodezyjnego wyznaczania przemieszczeń, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw 2006.
 
10.
Rutkowski L.: Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe PWN, Warsaw 2009.
 
11.
Sieci neuronowe, edit. M. Nałęcz, Akademicka Oficyna Wydawnicza EXIT, Warsaw 2000.
 
12.
Skrzypczak I., Kogut J., Kokoszka W., Zientek D., Monitoring of landslide areas with the use of contemporary methods of measuring and mapping, Civil and Environmental Engineering Reports, Vol. 24 (1), p.69-82, 2017.
 
13.
Tadeusiewicz R.: Sieci neuronowe, Akademicka Oficyna Wydawnicza, Warsaw 1993.
 
14.
Wuest B., Zhang Y.: Region based segmentation of quickbird imagery through fuzzy integration, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B7, Beijing 2008.
 
15.
Zaczek-Peplinska J., Pasik M., Popielski P.: Geodezyjny monitoring obiektów w rejonie oddziaływania budowy tuneli i głębokich wykopów - doświadczenia i wnioski, Acta Scientiarum Polonorum Architectura. Vol. 12 (2), p. 17-31, 2013.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top