ORIGINAL ARTICLE
Measuring Light Pollution in The Night Sky – from Technology Demonstrator to Monitoring System
 
More details
Hide details
1
Faculty of Earth Sciences and Spatial Management, Department of Geomatics and Cartography, Nicolaus Copernicus University in Toruń, Poland
 
 
Acceptance date: 2023-05-15
 
 
Publication date: 2023-06-20
 
 
Civil and Environmental Engineering Reports 2023;33(1):53-70
 
KEYWORDS
TOPICS
ABSTRACT
Pollution of the night sky by artificial light has now become an important element of the modern city landscape. The decline in the quality of the sky observed at night in urban areas has already been noticed even by residents unaware of its origin. A starry sky is nowadays not easy to observe even in places far from large conurbations or smaller cities. More and more places are losing access to the previously natural privilege of observing the dark sky, and their inhabitants are thus systematically exposed to all the direct and indirect negative effects of this phenomenon. Monitoring the brightness of the night sky is gaining interest from a growing number of interdisciplinary research groups being established around the world, including Poland. In Toruń, the first measurements of the magnitude of this phenomenon, together with the determination of its spatial scale, were started using handheld devices in 2017. In the following years, efforts were made to improve the data acquisition process by creating a prototype – a technology demonstrator and, consequently, a commercial version of an automatic device measuring the surface brightness of the night sky. This paper presents the stages of the project aimed at developing a light pollution monitoring system, which has been consistently implemented in Toruń. The most important component of this system is a measuring device of our own design and construction. The monitoring system designed and operating in Toruń, starting in 2019, is being further developed with new components and monitoring (measurement) sites being systematically added, making the city’s observation network increasingly dense. The devices built using the LoRa standard for wireless data exchange implement the concept of the Internet of Things, fitting in with the objectives of a smart city.
REFERENCES (26)
1.
Adafruit 2019. Adafruit TSL2591 High Dynamic Range Digital Light, Adafruit Learning System.
 
2.
Falchi, F. et al. 2016. The new world atlas of artificial night sky brightness. Science advances 2(6), e1600377.
 
3.
Garcia-Saenz, A, Sanchez de Miguel, A, Espinosa, A, Crespo, A, Aragonés, N, Llorca, J, Amiano, P, Martín, V, Guevara, M, Capelo, R, Tardón, A, Peiró, R, Jiménez-Moleón, J, Roca Barcelo, A, Perez-Gomez, B, Dierssen-Sotos, T, Fernández, T, Moreno-Iribas, C, Moreno, V and Kogevinas, M 2018. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (mcc-spain study). Environmental Health Perspectives 126. DOI 10.1289/EHP1837.
 
4.
Hänel A, Posch T, Ribas SJ, Aubé M, Duriscoe D, Jechow A, Kollath Z, Lolkema DE, Moore, C, Schmidt, N, Spoelstra, H, Wuchterl, G and Kyba, CCM 2017. Measuring night sky brightness: Methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer 205, 278–290. DOI 10.1016/j.jqsrt.2017.09.008.
 
5.
Jechow, A. et al. 2017. Measuring Light Pollution with Fisheye Lens Imagery from a Moving Boat, A Proof of Concept. International Journal of Sustainable Lighting 36, 15–25.
 
6.
Karpińska, D and Kunz, M 2019. Light pollution in the night sky of Toruń in the summer season. Bulletin of Geography. Physical Geography Series 17, 91–100. DOI 10.2478/bgeo-2019-0017.
 
7.
Karpińska, D and Kunz, M 2020. Analysis of light pollution of the night sky in Toruń (Poland). Civil and Environmental Engineering Reports, 155–172. DOI 10.2478/ceer-2020-0057.
 
8.
Karpińska, D and Kunz, M 2021. Analysis of the visibility and signal strength of the LoRaWAN network in an urbanized area – a case study of the Bielany campus at the Nicolaus Copernicus University in Toruń, Bulletin of Geography. Socio-Economic Series 54, 137–149. DOI 10.2478/bog-2021-0039.
 
9.
Karpińska, D and Kunz, M 2021. Rekonstrukcja zasięgu widoczności sieci LoRaWAN na terenie kampusu UMK w Toruniu [Reconstruction of the visibility range of the LoRaWAN network on the campus of the Nicolaus Copernicus University in Toruń]. [in:] Młynarczyk A. (ed.), Środowisko przyrodnicze, jako obszar badań, Bogucki Wydawnictwo Naukowe, Poznań, Vol. II, 47–60.
 
10.
Karpińska, D and Kunz, M 2023. Relationship between the surface brightness of the night sky and meteorological conditions. Journal of Quantitative Spectroscopy and Radiative Transfer 306, 108621. DOI 10.1016/j.jqsrt.2023.108621.
 
11.
Karpińska, D and Kunz, M 2022. Device for automatic measurement of light pollution of the night sky. Scientific Reports. DOI: 10.1038/s41598-022-20624-7.
 
12.
Karpińska, D and Kunz, M 2022. Optymalizacja rozmieszczenia sieci pomiarowej do monitoringu zanieczyszczenia światłem nocnego nieba na przykładzie Torunia [Optimization of the distribution of the measurement network for monitoring light pollution in the night sky on the example of Toruń]. [in:] Młynarczyk A. (ed.), Środowisko przyrodnicze jako obszar badań, Bogucki Wydawnictwo Naukowe, Poznań, Vol. IV, 9–24.
 
13.
Karpińska, D and Kunz, M 2023. Vertical variability of night sky brightness in urbanised areas. Quaestiones Geographicae 42(1), 5–14. DOI: 10.14746/quageo-2023-0001.
 
14.
Kocifaj, M and Bará, S 2020. Nighttime monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Monthly Notices of the Royal Astronomical Society: Letters 500, 47–51. DOI 10.1093/mnrasl/slaa181.
 
15.
Kolláth, Z 2010. Measuring and modelling light pollution at the Zselic Starry Sky Park. Journal of Physics Conference Series 218(1), 012001. DOI 10.1088/1742-6596/218/1/012001.
 
16.
Kołomański, S 2015. Zanieczyszczenie światłem i ciemność [Light pollution and darkness]. In: Wiśniewska MR, Tomasik K. (ed.), Przejdź na ciemną stronę nocy. Środowiskowe i społeczne skutki zanieczyszczenia światłem. Wyd. Uniwersytetu Warszawskiego. Warszawa, 29–46.
 
17.
Linares, H, Masana, E, Ribas, SJ, Aubé, M, Simoneau, A and Bará, S 2020. Night sky brightness simulation over Montsec protected area. Journal of Quantitative Spectroscopy and Radiative Transfer 249. DOI 10.1016/j.jqsrt.2020.106990.
 
18.
Light pollution reduction measures in Europe 2022. Working paper for international workshop “Light Pollution 2022”, during the Czech Presidency of the Council of the European Union, Ministry of the Environment of the Czech Republic, 60 p.
 
19.
Longcore, T, Rich, C and DelBusso, L 2017. Artificial Night Lighting and Protected Lands. Natural Resource Report NPS/NRSS/NSNS/NRR—2017/1493.
 
20.
Mikhaylov, K, Stusek, M, Masek, P, Petrov, V, Petäjäjärvi, J, Andreev, S, Pokorny, J, Hosek, J, Pouttu, A and Koucheryavy, Y 2018. Multi-RAT LPWAN in Smart Cities: Trial of LoRaWAN and NB-IoT Integration. IEEE International Conference on Communications (ICC), 1–6. DOI: 10.1109/ICC.2018.8422979.
 
21.
Pun, CSJ, So, CW, Leung, WY and Wong, CF 2014. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 90–108.
 
22.
Ribas, S, Torra, J, Figueras, F, Paricio, S and Canal-Domingo, R 2016. How clouds are amplifying (or not) the effects of ALAN. International Journal of Sustainable Lighting 18. DOI 10.26607/ijsl.v18i0.19.
 
23.
Semtech Corporation 2015. AN1200.22 LoRa™ Modulation Basics, Wireless Sensing and Timing Products, Application Note.
 
24.
Szlachetko, K 2022. red. Memorandum w sprawie ustanowienia prawnych podstaw zrównoważonej polityki oświetlenia zewnętrznego [Memorandum on establishing the legal basis for a sustainable outdoor lighting policy] Instytut Metropolitarny, Gdańsk, 48 p.
 
25.
Ściężor, T, Kubala, M, Kaszowski, W and Dworak, TZ 2010. Zanieczyszczenie świetlne nocnego nieba w obszarze aglomeracji krakowskiej. Analiza pomiarów sztucznej poświaty niebieskiej. [Light pollution of the night sky in the area of the Kraków agglomeration. Analysis of artificial blueglow measurements]. Wyd. Politechniki Krakowskiej. Kraków.
 
26.
Ściężor, T 2020. The impact of clouds on the brightness of the night sky. Journal of Quantum Spectroscopy and Radiative Transfer 247. DOI 10.1016/j.jqsrt.2020.106962.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top