ORIGINAL ARTICLE
Monitoring and Analysis of Ground Movements in the Babina Post-Mining Area
 
More details
Hide details
1
Faculty of Geoengineering, Mining and Geology, Department of Geodesy and Geoinformatics, Wrocław University of Science and Technology, Poland
 
 
Submission date: 2024-12-07
 
 
Final revision date: 2025-03-21
 
 
Acceptance date: 2025-03-24
 
 
Online publication date: 2025-04-18
 
 
Publication date: 2025-04-18
 
 
Corresponding author
Natalia Walerysiak   

Faculty of Geoengineering, Mining and Geology, Department of Geodesy and Geoinformatics, Wrocław University of Science and Technology, Stanisława Wyspiańskiego 27, 50-370, Wrocław, Poland
 
 
Civil and Environmental Engineering Reports 2025;35(2):258-279
 
KEYWORDS
TOPICS
ABSTRACT
Ground deformations in post-mining areas, such as subsidence and uplift, can occur for many decades after the end of mining. This article presents the findings of a5-year monitoring and analysis of ground movement in the post-mining area of the "Babina" mine, situated within the glacitectonic Muskau Arch. The study was aimed at analyzing continuous ground deformations observed using precision levelling. The measurement data were statistically processed and visualized using maps and graphs. The results indicate significant ground movements that vary seasonally and between different parts of the complex post-mining area. This points to additional research questions on the causes of these movements that could be attributed to groundwater table variation that should be further analysed. The article draws attention to the need of continuous monitoring of post-mining sites and integration of measurement results with additional data to gain a more comprehensive understanding of the processes taking place in post-mining areas.
REFERENCES (53)
1.
Samsonov, S, D’Oreye, N and Smets, B 2013. Ground Deformation Associated with Post-Mining Activity at the French-German Border Revealed by Novel InSAR Time Series Method. International Journal of Applied Earth Observation and Geoinformation 23, 142–154. https://doi.org/10.1016/j.jag.....
 
2.
Piwowarski, W 2019. Modelling of discontinuous deformations over shallow post-mining voids in the rock mass. Acta Geodynamica et Geomaterialia 253-256. https://doi.org/10.13168/AGG.2....
 
3.
Strzałkowski, P 2021. The influence of selected mining and natural factors on the sinkhole creation hazard based on the case study. Environmental Earth Sciences 80, 117. https://doi.org/10.1007/s12665....
 
4.
Declercq, PY, Dusar, M, Pirard, E, Verbeurgt, J, Choopani, A and Devleeschouwer, X 2023. Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sensing 15, 725. https://doi.org/10.3390/rs1503....
 
5.
Blachowski, J, Wajs, J, Walerysiak, N and Becker, M 2024. Monitoring of Post-Mining Subsidence using Airborne and Terrestrial Laser Scanning Approach. Archives of Mining Sciences 69, No 3. https://doi.org/10.24425/ams.2....
 
6.
Paszek, J 2024. Analysis of the Model Used to Predict Continuous Deformations of the Land Surface in Areas Subject to Discontinuous Deformations—A Case Study. Applied Sciences 14, 7676. https://doi.org/10.3390/app141....
 
7.
Maj, A and Kortas, G 2014. Przemieszczenia i naprężenia w otoczeniu kopalni Wapno w trakcie eksploatacji i po jej zatopieniu [Displacements and Stresses in the Vicinity of the Wapno Mine During Operation and After Flooding]. Prace Instytutu Mechaniki Górotworu PAN Vol. 16, no. 1-2, 61–76. https://doi.org/10.2478/amsc-2....
 
8.
Hu, L, Tomás, R, Tang, X, López Vinielles, J, Herrera, G, Li, T and Liu, Z 2023. Updating Active Deformation Inventory Maps in Mining Areas by Integrating InSAR and LiDAR Datasets. Remote Sensing 15, no. 4: 996. https://doi.org/10.3390/rs1504....
 
9.
Guzy, A and Witkowski, WT 2021. Land Subsidence Estimation for Aquifer Drainage Induced by Underground Mining. Energies 14, no. 15: 4658. https://doi.org/10.3390/en1415....
 
10.
Liu, R, Zou, R, Li, J, Zhang, C, Zhao, B and Zhang, Y 2018. Vertical Displacements Driven by Groundwater Storage Changes in the North China Plain Detected by GPS Observations. Remote Sensing 10, no. 2: 259. https://doi.org/10.3390/rs1002....
 
11.
Malinowska, AA, Witkowski, WT, Guzy, A and Hejmanowski, R 2020. Satellite-Based Monitoring and Modeling of Ground Movements Caused by Water Rebound. Remote Sensing 12, no. 11: 1786. https://doi.org/10.3390/rs1211....
 
12.
Abdullah, FM, Andriyanto, H, Nababan, JR, Abdillah, F and Sulistyawan, RIH 2021. Results of land subsidence measurement using GPS method in the Jakarta groundwater basin in 2015-2019. IOP Conference Series: Earth and Environmental Science 873, 012034. https://doi.org/10.1088/1755-1....
 
13.
Yang, K, Xiao, J, Duan, M, Pang, B, Wang, Y and Wang, R 2009. Geo-Deformation Information Extraction and GIS Analysis on Important Buildings by Underground Mining Subsidence. 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 1-4. https://doi.org/ 10.1109/ICIECS.2009.5362679.
 
14.
Usoltseva, LA, Lushpei, VP and Mursin, VA 2017. Modern methods of surveyor observations in opencast mining under complex hydrogeological conditions. IOP Conference Series: Earth and Environmental Science, Volume 87, Issue 5, 87, 052030. https://doi.org/10.1088/1755-1....
 
15.
Kosnik, DE, Kotowsky, MP, Dowding, CH and Finno, RJ 2012. Case Studies in Integrated Autonomous Remote Monitoring. FMGM 2007 Proceedings, 1-11. https://doi.org/10.1061/40940(....
 
16.
Lindgren, RJ, Houston, NA, Musgrove, M, Fahlquist, LS and Kauffman, LJ 2011. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas, U.S. Geological Survey Scientific Investigations Report 2011–5149, 93 p. https://doi.org/10.3133/sir201....
 
17.
Cuenca, MC, Hooper, AJ and Hanssen, RF 2013. Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. Journal of Applied Geophysics 88, 1-11. https://doi.org/10.1016/j.japp....
 
18.
Blachowski, J, Kopeć, A, Milczarek, W and Owczarz, K 2019. Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland. Sustainability 11, no. 3: 884. https://doi.org/10.3390/su1103....
 
19.
Zhengyuan, Q, Agarwal, V, Gee, D, Marsh, S, Grebby, S, Chen, Y and Meng, N 2021. Study of Ground Movement in a Mining Area with Geological Faults Using FDM Analysis and a Stacking InSAR Method. Frontiers in Environmental Science 9. https://doi.org/10.3389/fenvs.....
 
20.
Jiang, K, Yang, K, Zhang, Y, Li, Y, Li, T and Zhao, X 2023. An Extraction Method for Large Gradient Three-Dimensional Displacements of Mining Areas Using Single-Track InSAR, Boltzmann Function, and Subsidence Characteristics. Remote Sensing 15, no. 11: 2946. https://doi.org/10.3390/rs1511....
 
21.
Chatterjee, RS, Thapa, S and Singh, KB 2015. Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. Journal of Earth System Science 124, 1359–1376. https://doi.org/10.1007/s12040....
 
22.
Pawluszek-Filipiak, K and Borkowski, A 2020. Monitoring Mining-Induced Subsidence by Integrating Differential Radar Interferometry and Persistent Scatterer Techniques. European Journal of Remote Sensing 54 (sup1): 18–30. https://doi.org/10.1080/227972....
 
23.
Zhu, M, Yu, X and Tan, H 2024. Integrated high-precision monitoring method for surface subsidence in mining areas using D-InSAR, SBAS, and UAV technologies. Sci Rep 14, 12445. https://doi.org/10.1038/s41598....
 
24.
Gao, J and Hu, H 2009. Advanced GNSS Technology of Mining Deformation Monitoring. Procedia Earth and Planetary Science Volume 1, Issue 1, 1081–1088. https://doi.org/10.1016/j.proe....
 
25.
Ma, F, Gu, H, Guo, J and Lu, R 2018. Analysis of Ground Deformation Based on GPS in Sanshandao Gold Mine, China. Journal of Nepal Geological Society 55(1), 7–14. https://doi.org/10.3126/jngs.v....
 
26.
Tondaś, D, Kazmierski, K and Kapłon, J 2023. Real-Time and Near Real-Time Displacement Monitoring With GNSS Observations in the Mining Activity Areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing vol. 16, 5963–5972. https://doi.org/10.1109/JSTARS....
 
27.
Krawczyk, A, Perski, ZA and Hanssen, RF 2007. Application of ASAR interferometry for motorway deformation monitoring. In H. Lacoste, & L. Ouwehand (Eds.), Proceedings of Envisat Symposium, Montreux, Switzerland, 23-27 April 2007 (pp. 1-4). ESA Publications.
 
28.
Raucoules, D, Le Mouelic, S, Carnec, C and Guise, Y 2008. Monitoring Post-Mining Subsidence in the Nord-Pas-de-Calais Coal Basin (France): Comparison Between Interferometric SAR Results and Levelling. Geocarto International 23(4), 287–295. https://doi.org/10.1080/101060....
 
29.
Vervoort, A 2021. Various Phases in Surface Movements Linked to Deep Coal Longwall Mining: From Start-Up Till the Period After Closure. International Journal of Coal Science & Technology, 8, 412–426. https://doi.org/10.1007/s40789....
 
30.
Malinowska, AA, Witkowski, WT, Hejmanowski, R, Chang, L, van Leijen, FJ and Hanssen, RF 2019. Sinkhole Occurrence Monitoring Over Shallow Abandoned Coal Mines with Satellite-Based Persistent Scatterer Interferometry. Engineering Geology 262, 105336. https://doi.org/10.1016/j.engg....
 
31.
Wan-Mohamad, WNS and Abdul-Ghani, AN 2011. The Use of Geographic Information System (GIS) for Geotechnical Data Processing and Presentation. Procedia Engineering Volume 20, 397–406. https://doi.org/10.1016/j.proe....
 
32.
Xiao, HP and Chen, LL 2011. The Research of the Deformation Monitoring System Based on GIS/GPS Integration. Advanced Materials Research Volumes 243–249, 5828–5831. https://doi.org/10.4028/www.sc....
 
33.
Henschel, MD, Sato, S, Lehrbass, B and Deschamps, B 2015. On the Accuracy of Surface Movement Measurement over a SAGD Operation in Northern Alberta through Effective Survey Design. SPE Canada Heavy Oil Technical Conference, Calgary, Alberta, Canada. https://doi.org/10.2118/174477....
 
34.
Antonio, T, Parnadi, WW and Heriawan, MN 2021. Integrating Ground Penetrating Radar, Induced Polarization and Aerial Photograph to Analyze Land Subsidence in Borehole Mining Operation Area: A Case Study from South Bangka Island. IOP Conference Series: Earth and Environmental Science 873, 012081. https://doi.org/10.1088/1755-1....
 
35.
John, A 2021. Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry—A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining 1(1), 35–58. https://doi.org/10.3390/mining....
 
36.
Billi, A, De Filippis, L, Poncia, PP, Sella, P nad Faccenna, C 2016. Hidden Sinkholes and Karst Cavities in the Travertine Plateau of a Highly-Populated Geothermal Seismic Territory (Tivoli, Central Italy). Geomorphology 255, 63–80. https://doi.org/10.1016/j.geom....
 
37.
Quinta-Ferreira, M 2019. Ground Penetration Radar in Geotechnics: Advantages and Limitations. IOP Conference Series: Earth and Environmental Science 221, 012019. https://doi.org/10.1088/1755-1....
 
38.
Badura, J, Gawlikowska, E, Kasiński, J, Koźma, J, Kupetz, M, Piwocki, M and Rascher, J 2003. Geopark „Łuk Mużakowa” – proponowany transgraniczny obszar ochrony georóżnorodności [Geopark “Łuk Mużakowa” – Proposed Transboundary Area for Geo-Diversity Conservation]. Przegląd Geologiczny 51, 54–58.
 
39.
Koźma, J 2017. Geoturystyczne Walory Krajobrazu Łuku Mużakowa [Geotouristic Values of the Landscape of the Łuk Mużakowa]. Górnictwo Odkrywkowe 58: 32–40.
 
40.
Osika, R 1970. Geologia i Surowce Mineralne Polski [Geology and Mineral Resources of Poland]. Warszawa: Wydawnictwa Geologiczne.
 
41.
Gontaszewska, A, Kraiński, A, Jachimko, B and Kołodziejczyk, U 2007. Budowa geologiczna i warunki hydrogeologiczne zbiornika antropogenicznego w okolicach Łęknicy (Łuk Mużakowa) [Geological Structure and Hydrogeological Conditions of the Anthropogenic Reservoir in the Vicinity of Łęknica (Łuk Mużakowa)]. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 134: 33–40.
 
42.
Heyduk, T, Jerzak, L, Koźma, J and Sobera, R 2005. Park Mużakowski i atrakcje geoturystyczne okolic Łęknicy [Mużakowski Park and Geotouristic Attractions of the Łęknica Area]. Łęknica: ‘Chroma’ Drukarnia Krzysztof Raczkowski: na zlec. i przy współpr. Urzędu Miejskiego.
 
43.
Greinert, A, Bazan-Krzywoszańska, A, Drab, M, Fiszer, J, Gontaszewska, A, Jachimko, B and Jędrczak, A 2015. Wydobycie węgla brunatnego i rekultywacja terenów pokopalnianych w regionie lubuskim [Brown Coal Mining and Reclamation of Post-Mining Areas in the Lubusz Region]. Zielona Góra: Instytut Inżynierii Środowiska Uniwersytetu Zielonogórskiego.
 
44.
Koźma, J and Maciantowicz, M 2023. ŁUK MUŻAKOWA i ZIELONY LAS wokół Żar. 2023. Przwodnik turystyczny – dziedzictwo geologiczne, przyrodnicze i kulturowe [ŁUK MUŻAKOWA and the GREEN FOREST around Żary. 2023. Tourist Guide - Geological, Natural, and Cultural Heritage]. Zielona Góra: Carbo Media Spółka z o.o., ISBN 8396822506, 9788396822505.
 
45.
PN-81/B-03020: Grunty budowlane: posadowienie bezpośrednie budowli: obliczenia statystyczne i projektowanie. [Building soils: direct foundation of structures: statistical calculations and design.].
 
46.
Regulation of the Minister of Internal Affairs and Administration of 9 November 2011 on the Technical Standards for Performing Land Surveying Situational and Altimetric Measurements and Developing and Transferring the Results of These Measurements to the National Geodetic and Cartographic Resource (Dz. U. 2011 nr 263, poz. 1572). Available at: https://isap.sejm.gov.pl/isap.....
 
47.
Kowalczyk, K, Rapinski, J and Mróz, M 2010. Analysis of Vertical Movements Modelling Through Various Interpolation Techniques. Acta Geodynamica et Geomaterialia 7, 399–409.
 
48.
Green, PJ and Sibson, R 1978. Computing Dirichlet Tessellations in the Plane, The Computer Journal, 21, Issue 2, Pages 168–173. https://doi.org/10.1093/comjnl....
 
49.
Modeste, G, Doubre, C and Masson, F 2021. Time Evolution of Mining-Related Residual Subsidence Monitored Over a 24-Year Period Using InSAR in Southern Alsace, France. International Journal of Applied Earth Observation and Geoinformation 102, 102392. https://doi.org/10.1016/j.jag.....
 
50.
Ferretti, A, Prati, C and Rocca, F 2001. Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing vol. 39, no. 1, 8–20. https://doi.org/10.1109/36.898....
 
51.
Szczerbowski, Z 2007. The Evaluation of Salt Dome Vertical Movements in Inowroclaw Detected by Classical Precise Levelling and GPS Surveying Techniques. Acta Geodynamica et Geromaterialia 4(4), 217+.
 
52.
Dudek, M, Sroka, A, Tajduś, K, Misa, R and Mrocheń, D 2022. Assessment and Duration of the Surface Subsidence After the End of Mining Operations. Energies 15(22), 8711. https://doi.org/10.3390/en1522....
 
53.
Blachowski, J, Chrzanowski, A and Szostak-Chrzanowski, A 2014. Application of GIS Methods in Assessing Effects of Mining Activity on Surface Infrastructure. Archives of Mining Sciences 59(2), 307–321. https://doi.org 10.2478/amsc-2014-0022.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top