ORIGINAL ARTICLE
Multi-Criteria Analysis and Design Ideas of Green Façade Systems as Eco-Friendly Architectural Solutions
 
More details
Hide details
1
Institute of Architecture and Physical Planning, Faculty of Architecture, Poznan University of Technology, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2023-10-31
 
 
Final revision date: 2024-01-02
 
 
Acceptance date: 2024-01-04
 
 
Online publication date: 2024-01-22
 
 
Publication date: 2024-01-22
 
 
Corresponding author
Patrycja Kamińska   

Wydział Architektury, Politechnika Poznańska, Jacka Rychlewskiego 2, 61-131, Poznań, Poland
 
 
Civil and Environmental Engineering Reports 2023;33(4):23-41
 
KEYWORDS
TOPICS
ABSTRACT
The article discusses current trends in designing green and eco-friendly façades of buildings of different functions in Poland and around the world. Information collected on completed façade projects, associated research and conclusions formulated on the basis thereof, indicate trends and possibilities for the use of contemporary material solutions and technologies in designing various forms of vertical 'greenery’ which support sustainable development of urban areas. The main objective of the research was to identify the most important features of green façades as eco-friendly architectural solutions. A case study with descriptions of the features and qualitative elements of 100 of the most architecturally interesting buildings with characteristic external wall structures was constructed for research purposes. The sites selected for the case study represent a review of global trends. The data was then used for a multi-criteria analysis of green façade systems from the perspective of eco-friendly architectural solutions. The conducted research, analyses and discussions on solutions already in place were then implemented as guidelines for innovative architectural design solutions, which were presented at the Faculty of Architecture at Poznań University of Technology in the form of selected diagrams and student visualisations. These comprised highly aesthetic compositions, possible to implement in the near future.
REFERENCES (39)
1.
Alothman, RAT, Abdin, AR and Mahmoud, AH 2022. The effect of using vegetated façades on CO2 emissions in multistory residential buildings, in cold semiarid and hot arid climate. IOP Conference Series: Earth and Environmental Science 1113, IOP Publishing, Cairo, Egypt, September, 23–25, 1–16.
 
2.
Banti, N, Ciacci, C, Di Naso, V and Bazzocchi, F 2023. Green Walls as Retrofitting Measure: Influence on Energy Performance of Existing Industrial Buildings in Central Italy. Buildings 13(2), 1–17. https://doi.org/10.3390/buildi....
 
3.
Bing, J, Granados Caro, L, Talathi, HP, Chang, NL, Mckenzie, DR and Ho-Baillie, AWY 2022. Perovskite solar cells for building integrated photovoltaics⁠—glazing applications. Joule 6, 1446–1474.
 
4.
Borowski, J and Latocha, P 2006. Dobór drzew i krzewów do warunków przyulicznych Warszawy i miast centralnej Polski [Trees and shrubs suitable for street conditions in Warsaw and other cities in central Poland], Rocznik Dendrologiczny 54, 83–93. https://pbsociety.org.pl/ind/r....
 
5.
Bradecki, T, Tofiluk, A and Uherek-Bradecka, B 2022. Challenges in the Design of Prefabricated Single-Family Buildings with Expanded Clay Technology - Selected Architectural and Environmental Aspects. Civil and Environmental Engineering Reports, 32(4), 323–344. https://doi.org/10.2478/ceer-2....
 
6.
Ćwiklińska, KA and Dudzińska-Jarmolińska, A 2020. Implementacja „żyjących fasad” na osiedlach mieszkaniowych z wielkiej płyty jako element adaptacji miast do zmian klimatu na przykładzie Warszawy [Implementation of “living facades” in prefabricated housing estates as a way of adapting cities to climate change – Warsaw case study]. Studia Miejskie 38, 71–86. https://doi.org/10.25167/sm.22....
 
7.
Drozd, W and Kowalik, M 2021. Współcześnie stosowane specjalne okładziny elewacyjne [Contemporary special facade claddings]. Przegląd budowlany 92(7-8), 68–72. https://www.google.com/url?sa=....
 
8.
Fensterseifer, P, Gabriel, E, Tassi, R, Gustavo, D, Piccilli, A and Minetto, B 2022. A year-assessment of the suitability of a green façade to improve thermal performance of an affordable housing. Ecological Engineering 185, 106810. https://doi.org/10.1016/j.ecol....
 
9.
Gao, Y, Farrokhirad, E and Pitts, A 2023. The Impact of Orientation on Living Wall Façade Temperature: Manchester Case Study. Sustainability 15(14), 1–24. https://doi.org/10.3390/su1514....
 
10.
García, M, Vera, S, Rouault, F, Gironás, J and Bustamante, W 2022. Cooling potential of greenery systems for a stand-alone retail building under semiarid and humid subtropical climates. Energy and Buildings 259, 111897. https://doi.org/10.1016/j.enbu....
 
11.
Gómez, A, Esenarro, D, Martinez, P, Vilchez, S and Raymundo, V 2023. Thermal Calculation for the Implementation of Green Walls as Thermal Insulators on the East and West Facades in the Adjacent Areas of the School of Biological Sciences, Ricardo Palma University (URP) at Lima, Peru 2023. Buildings 13(9), 1–35. https://www.mdpi.com/2075-5309....
 
12.
Gronostajska, B 2010. Zespoły mieszkaniowe z wielkiej płyty w XXI wieku – problem i perspektywy [Slabs housing estates in 21st century – problems and prospects]. ARCHITECTURAE et ARTIBUS 2(4), 19–26. http://aeawa.pb.edu.pl/wp-cont....
 
13.
Hajibeigi, P, Pazhouhanfar, M, Grahn, P and Nazif, H 2023. Enhancing Citizens’ Perceived Restoration Potential of Green Facades through Specific Architectural Attributes. Buildings 13(9), 1–26. https://doi.org/10.3390/buildi....
 
14.
Jagoda-Sobalak, D, Łapuńka, I and Marek-Kołodziej, K 2017. Projektowanie i wdrażanie rozwiązań innowacyjnych [Design and implementation of innovative solutions]. Zeszyty Naukowe. Organizacja i Zarządzanie, Politechnika Śląska 114, 155–165. https://bibliotekanauki.pl/art....
 
15.
Johnson, A and Brown, K 2022. Design and Performance Evaluation of Green Wall Systems for Building Façades. Sustainable Building Technology 8(3), 123-140.
 
16.
Kamińska, P and Michalak, H 2022. Innovative, Modular Building Facades - as a Tool to Counteract The Effects of and to Prevent Climate Change. Civil and Environmental Engineering Reports 32(4), 184–209. https://doi.org/10.2478/ceer-2....
 
17.
Kanoniczak, M and Marcinkowski, K 2020. 60 lat poznańskiej wielkiej płyty [60 years of Poznań large-panel construction]. Przegląd budowlany 19(11), 33–38. http://yadda.icm.edu.pl/baztec....
 
18.
Knosala, R, Wasilewska, B and Boratyńska-Sala, A 2018. Tworzenie innowacyjnych rozwiązań [Creating innovative solutions]. In: Knosala, R (ed) Innowacje w zarządzaniu i inżynierii produkcji. Opole: Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, 77–87.
 
19.
Korol, E and Shushunova, N 2022. Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems. Sustainability 14(11), 6891. https://doi.org/10.3390/su1411....
 
20.
Madhushan, S, Buddika, S, Bandara, S, Navaratnam, S and Abeysuriya, N 2023. Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review. Sustainability 15(14), 1–22. https://doi.org/10.3390/su1514....
 
21.
Mostafa, MS A, Ali, K AR and Ahmed, HH A 2015. Development of Intelligent Façade Based on Outdoor Environment and Indoor Thermal Comfort. Procedia Technology 19, 742–749. https://doi.org/10.1016/j.prot....
 
22.
Niedziela-Wawrzyniak, S and Wawrzyniak C 2021. Zielone ściany jako szansa dla humanizacji miast [Green walls as an opportunity for the humanization of the city]. Builder 289(8), 27–31. http://dx.doi.org/10.5604/01.3....
 
23.
Niezabitowska, ED 2014. Metody i techniki badawcze w architekturze [Research methods and techniques in architecture]. Gliwice: Wydawnictwo Politechniki Śląskiej.
 
24.
Ozar, B and Yusecan, E 2020. Usage Of Plastic Wastes in Furniture Production: Three Dimensional (3D) Printing Technologies. 2nd International Education In Interior Architecture Symposium, Ankara, Turkey, 1–11.
 
25.
Pancewicz, A 2022. Urban Nature as an Active Means of Adapting Public Spaces to Climate Conditions: Case Studies from Copenhagen and Selected Polish Cities. Civil and Environmental Engineering Reports 32(4), 123–146. https://doi.org/10.2478/ceer-2....
 
26.
Perini, K, Ottelé, M, Haas, E and Raiteri, R 2011. Greening the building envelope, facade greening and living wall systems. Open Journal of Ecology 1(1), 1-8. http://dx.doi.org/10.4236/oje.....
 
27.
Preciado, A and Santos, JC 2020. Rammed earth sustainability and durability in seismic areas as a building material. IOP Conference Series: Earth and Environmental Science 410, IOP Publishing, Thessaloniki, Greece, 1–9.
 
28.
Rakhshandehroo, M, Yusof, M, Johari, M and Deghati Najd, M 2015. Green Façade (Vertical Greening): Benefits and Threats. Applied Mechanics and Materials 747, 12–15.
 
29.
Ramadhan, AM and Mahmoud, AH 2023. Evaluating the efficiency of a living wall facade as a sustainable energy-saving alternative in hot arid regions. Journal of Engineering and Applied Science 70(96), 1–25. https://jeas.springeropen.com/....
 
30.
Rodriguez, G, Bodennec, J, Bruneau, D, Lagiere, P and Rouault, F 2016. Interdisciplinary design for the development of a wood house with positive Energy. World Conference on Timber Engineering, Vienna University of Technology, Vienna, Austria, August, 22–25, 1–9. https://www.researchgate.net/p....
 
31.
Schroeder, G, Messyasz, B, Łęska, B, Fabrowska, and Pikosz, M 2013. Biomasa alg słodkowodnych surowcem dla przemysłu i rolnictwa [Biomass of freshwater algae as raw material for the industry and agriculture]. Przemysł Chemiczny 92, 1380–1384.
 
32.
Smith, MJ 2017. The function of a green wall system when integrated with greywater treatment, recycling, and irrigation; exploration of water quality, watre resources and planting media. PhD thesis. University of Reading. https://centaur.reading.ac.uk/....
 
33.
Stachura, T, Halecki, W, Bedla, D and Chmielowski, K 2022. Spatial Solar Energy Potential of Photovoltaic Panels Surrounded by Protected Mountain Ranges. Civil and Environmental Engineering Reports 32(4), 73–95. https://doi.org/10.2478/ceer-2....
 
34.
Szewczyk, O 2022. Słońce na końcu tunelu. ACADEMIA. Magazyn Polskiej Akademii Nauk 71(3), 53–55. https://doi.org/10.24425/acade....
 
35.
Talhinhas, P, Ferreira, JC, Ferreira, V, Soares, AL, Espírito-Santo, D and Paço, TAd 2023. In the Search for Sustainable Vertical Green Systems: An Innovative Low-Cost Indirect Green Façade Structure Using Portuguese Native Ivies and Cork. Sustainability 15(6), 1–11. https://doi.org/10.3390/su1506....
 
36.
Theingi, A, Sui Reng, L, Arkar, H and Amiya, B 2023. Implementing green facades: A step towards sustainable smart buildings. Journal of Smart Cities and Society 2(1), 41–51. https://content.iospress.com/a....
 
37.
Wang, P, Wong, YH, Tan, CY, Li, S and Chong, WT 2022. Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability 14(20), 12997. https://doi.org/10.3390/su1420....
 
38.
Widiastuti R 2022. Potensi Vertical Greenery Systems Di Dalam Mendukung Penghematan Energi Pada Bangunan: Critical Review [The Potential of Vertical Greenery Systems in Supporting Energy Savings in Buildings: A Critical Review]. Modul 22(2), 70–79. https://garuda.kemdikbud.go.id....
 
39.
Zheng, X, Hu, W, Luo, S, Zhu, Z, Bai, Y, Wang, W, Pan, L and Zheng, X 2023. Effects of vertical greenery systems on the spatiotemporal thermal environment in street canyons with different aspect ratios: A scaled experiment study. Science of The Total Environment 859, part 2, 160408. https://doi.org/10.1016/j.scit....
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top