ORIGINAL ARTICLE
New Datings of Deposits From Odra River Valley - Stratigraphic Consequences and Interpretation at Fluvial Succession
More details
Hide details
1
University of Zielona Gora, Zielona Góra, Poland
2
Adam Mickiewicz University, Poznań, Poland
Online publication date: 2019-12-21
Publication date: 2019-09-01
Civil and Environmental Engineering Reports 2019;29(3):183-199
KEYWORDS
ABSTRACT
This paper presents organic sediments age analysis in Odra river valley in Słubice, western Poland. In this middle reach of Odra valley reach the uppermost fluvial deposits contain several alternate layers of organic sediments. These deposits have been mostly interpreted as the Holocene fluvial (floodplain) sediments, even if visible admixture of organic matter is not observed. However, there is also another hypothesis. Geotechnical studies conducted in several locations in Słubice, have questioned this interpretation. The main argument was the values of preconsolidation ratio in the range of 0.8 to 5.4, which may suggest, that the analysed sediments were covered by an ice sheet. Also, based on the presence of a clay layer devoid of organic matter impurities in the top of organic deposits, the second one presumes an interglacial (possibly Eemian) age of the discussed fluvial/organic sediments (peats and silts). To verify these hypotheses, six samples from six different boreholes drilled in the Odra river valley, in the centre of Słubice were collected. The results of 14C dating and its interpretation allowed to determine the age of the tested material. All analysed samples from Słubice (Odra river valley) were formed within the last 10,000 years - in Preboreal, Atlantic and Subboreal. Such a result contradicts the earlier stratigraphic interpretations.
REFERENCES (40)
1.
Ascough, PL, Bird, MI, Francis, S and Lebl, T 2011. Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids. Journal of Archaeological Science 38, 69‒78.
2.
Benysek, M, Michalska, D, Fabisiak, E and Stawikowski, W 2017. Analysis of charcoal and wood from Czarnówko site (Pomerania Region, Poland): 14C dating versus relative chronology show consistent evidence of Wielbark Culture presence. Radiocarbon 59, 1, 45‒60.
3.
Boulton, GS and Dobbie, KE 1993. Consolidation of sediments by glaciers: relations between sediment geotechnics, soft-bed glacier dynamics and subglacial ground-water flow. Journal of Glaciology 39, 26‒44.
4.
Brose, F 1988. Geological Processes and its results in Ziltendorf Lowland from Vistula Glaciation. Veröffentlichungen des Museums für Ur- und Frühgeschichte Potsdam 22, 127‒134.
5.
Büntgen, U et al. J 2011. 2500 Years of European Climate Variability and Human Susceptibility. Science 331, 6017, 578‒582.
6.
Ferguson, RJ and Brierly, GJ 1999. Downstream changes in valley confinement as a control on floodplain morphology, lower Tuross River, NSW, Australia: a constructivist approach to floodplain analysis. In: Miller, AJ and Gupta, A (eds) Varieties of fluvial Form. Chichester: Wiley, 378‒407.
7.
Fowler, AJ, Gillespie, R and Hedges, REM 1986. Radiocarbon dating of sediments by accelerator mass spectrometry. Physics of the Earth and Planetary Interiors 44, 15‒20.
9.
Geyh, MA and Schleicher, H 1990. Absolute Age Determination. Physical and Chemical Dating Methods and Their Application. Berlin Heidelberg: Springer-Verlag.
10.
Gontaszewska, A 2010. Origin and geotechnic aspects of organic soils occurace in Odra valley in Słubice (Geneza i geotechniczne aspekty występowania gruntów organicznych w dolinie Odry - przykład Słubic). Górnictwo i Geologia 5, 4, 105‒114.
11.
Gontaszewska, A 2012. Organic soils in Słubice, Odra river valley (Grunty organiczne na terenie Słubic (dolina Odry)). In: Błaszkiewicz, M and Brose, F (eds) Correlation of Pleistocene sediments on the Polish-German border in the lower Odra valley (Korelacja osadów plejstocenu na pograniczu polsko-niemieckim w Dolinie Dolnej Odry). XIX konferencja Stratygrafia plejstocenu Polski. Państwowy Instytut Geologiczny, Cedynia, September, 3-7, 61‒67.
12.
Goslar, T, Czernik, J and Goslar, E 2004. Low-energy 14C AMS in Poznań Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research B 223, 5‒11.
13.
Holtz, RD, Kovacs, WD and Sheahan, TC 2011. An introduction to Geotechnical Engineering. Upper Saddle River: Pearson Education.
14.
Howard, AD 1992. Modeling channel migration and floodplain sedimentation in Meandering Streams. In: Carling, PA and Petts, GE (eds) Lowland Floodplain Rivers: geomorphological Perspectives. Chichester: Wiley, 1‒41.
15.
Kalis, AJ, Merkt, J and Wunderlich J 2003. Environmental changes during the Holocene climatic optimum in central Europe - human impact and natural causes. Quaternary Science Reviews 22, 33‒79.
16.
Keilhack, v.K and Linstow, v.O 1931. Geological map of Prussia and neighboring German countries, explanations to sheet Frankfurt a.Oder (Geologische Karte von Preußen und benachbarten deutschen Ländern, Erläuterungen zu Blatt Frankfurt a.Oder) 1983, 91, Berlin (Preuß. Geol. Landesanstalt).
17.
Kotowski, J and Kraiński, A 1989. Glacitectonical disturbances along the Nysa Łużycka and Oder river valley on the Sanice - Kostrzyn section (Zaburzenia glacitektoniczne wzdłuż doliny Nysy Łużyckiej i Odry na odcinku Sanice – Kostrzyn). VI Glaciotectonics Symposium, Wyd. Uczelniane WSI, Zielona Góra, 149‒157.
18.
Kotowski, J and Kraiński, A 2000a. Geologic structure of Oder-Valley in Słubice-city (Budowa geologiczna Doliny Odry w Słubicach). Zeszyty Naukowe Uniwersytetu Zielonogórskiego 121, 61-68.
19.
Kotowski, J and Kraiński, A 2000b. Chosen geotechnic problems of Słubice-grounds (Wybrane zagadnienia geotechniczne gruntów ze Słubic). Zeszyty Naukowe Uniwersytetu Zielonogórskiego 121, 77‒92.
20.
Kotowski, J and Kraiński, A 2000c. Preconsolidation coefficient in organic soils in Słubice-city (Współczynnik prekonsolidacji w gruntach organicznych w Słubicach). Zeszyty Naukowe Uniwersytetu Zielonogórskiego 121, 93‒104.
21.
Kozarski S., Rotnicki K. 1977. Valley floors and changes of river channel patterns in the North Polish Plain during the Late Würm and Holocene. Quaestiones Geographicale 4, 51‒93.
22.
Krygowski, B 1961. Physical geography of the Wielkopolska Lowland, Part I. Geomorphology (Geografia fizyczna Niziny wielkopolskiej. Cz. I. Geomorfologia). Poznań: PTPN, Wydział Matematyczno-Przyrodniczy, Komitet Fizjograficzny.
23.
Mangerud, J, Andersen, ST, Berglund, BE and Donner, JJ 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 109‒128.
24.
Marks, L 2005. Pleistocene glacial limits in the territory of Poland. Przegląd Geologiczny 53, 988‒993.
25.
Marks, L 2016. Climate change in the Holocene (Zmiany klimatu w holocenie). Przegląd Geologiczny 64, 59‒65.
26.
Marks, L, Ber, A and Lindner, L (eds) 2014. Principles of the Polish stratigraphic classification and terminology of the Quaternary (Zasady polskiej klasyfikacji i terminologii stratygraficznej czwartorzędu). Warszawa: Polska Akademia Nauk, Komitet Badań Czwartorzędu.
27.
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M and Żurakowska, M 2013. Cretaceous aggregate and reservoir effect in dating of binding materials. Geochronometria 40, 1, 33‒41.
28.
Michczyńska, D, Starkel, L, Nalepka, D and Pazdur, A 2013. Hydrological Changes after the last ice retreat in Northern Poland using radiocarbon dating. Radiocarbon 55, 2-3, 1712‒1723.
29.
Nawrocka, D, Michniewicz, J, Pawlyta, J and Pazdur, A 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24, 109‒ 115.
30.
Notebaert, B and Verstraeten, G 2010. Sensitivity of West and Central European river systems to environmental changes during the Holocene: A review. Earth-Science Reviews 103, 163‒182.
31.
PN-EN ISO 14688 Geotechnical investigation and testing. Identification and classification of soil.
32.
Starkel, L, Soja, R and Michczyńska, DJ 2006. Past hydrological events reflected in Holocene history of Polish rivers. Catena 66, 24‒33.
33.
Starkel, L, Michczyńska, D, Krąpiec, M, Margielewski, W, Nalepka, D and Pazdur, A 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria 40, 1, 1‒21.
34.
Starkel, L, Michczyńska, DJ, Gębica, P, Kiss, T, Panin, A and Persoui, J 2015. Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60-8 ka cal BP). Quaternary International 388, 97‒118.
35.
Reimer, PJ et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 Years cal BP. Radiocarbon 55, 1869‒1887.
36.
Urbański, K 2005. Geological map explanation of Poland in scale 1:50 000, Słubice sheet 462 (Objaśnienia mapy geologicznej Polski w skali 1: 50 000, arkusz Słubice (462)). Warszawa: Ministerstwo Ochrony Środowiska i Państwowy Instytut Geologiczny.
37.
Urbański, K and Winter, H 2005. The Eemian Interglacial in the section Radówek (Łagów lakeland, western Poland) and its implication for till lithostratigraphy (Stanowisko interglacjału eemskiego w Radówku (Pojezierze Łagowskie, zachodnia Polska) i jego implikacje dla litostratygrafii glin zwałowych). Przegląd Geologiczny 53, 418‒424.
38.
Walanus, A and Goslar, T 2009. Radiocarbon dating (Datowanie radiowęglowe). Kraków: Wydawnictwa AGH.
39.
Walanus, A and Nalepka, D 2005. Calendar age of boundaries arbitrarily determined in radiocarbon time scale (Wiek rzeczywisty granic chronozon wyznaczonych w latach radiowęglowych). Botanical Guidebooks 28, 313‒ 321.
40.
Zieliński, T 2014. Sedimentology. Rivers and lake deposits (Sedymentologia. Osady rzek i jezior). Poznań: Wydawnictwo Naukowe UAM.