ORIGINAL ARTICLE
Non-destructive Testing of Wooden Elements in Historic Buildings - An Example of Testing a 19th Century Roof Truss Structure
 
More details
Hide details
1
Institute of Civil Engineering, University of Zielona Góra
 
 
Submission date: 2024-05-01
 
 
Final revision date: 2024-06-18
 
 
Acceptance date: 2024-07-04
 
 
Online publication date: 2024-07-26
 
 
Publication date: 2024-07-26
 
 
Corresponding author
Beata Nowogońska   

Instytut Budownictwa, Uniwersytet Zielonogórski, ul. Licealna 9, 9730713421, 65-417, Zielona Góra, Poland
 
 
Civil and Environmental Engineering Reports 2024;34(3):154-164
 
KEYWORDS
TOPICS
ABSTRACT
Destructive tests are not usually allowed in historic buildings; only non-destructive tests can be performed there. The obtained results should deliver the repair solutions that do not interfere into the historic layout of the church architecture and structure. One of the rarest areas subjected to non-destructive testing is diagnostic testing of wooden structures. However, calculations of strength verification cannot be performed if the wood class and quality are not determined. This paper describes in situ non-destructive testing of timber structural components of the roof truss system in the 19th century church in Osiecznica. The applied techniques were the standard ultrasonic and sclerometric methods, and additionally the original ultrasonic method with an instrument for analyzing the flow velocity of transverse waves.
REFERENCES (23)
1.
Franke, H 1936. Ostgermanische Holzbaukultur, Breslau.
 
2.
Klein, U 1985. Datierte Fachwerkbauten des 13. Jahrhunderts. Zeitschrift fur Archeologie des Mittelaltres nr 13.
 
3.
Morales Conde, MJ, Rodríguez Linan, C, Rubio de Hita, P 2014. Use of ultrasound as a non-destructive evaluation technique for sustainable interventions on wooden structures. Building and Environment, Vol. 82, pp. 247-257.
 
4.
Calderoni, C, De Matteis, G, Giubileoa, C, Mazzolani, FM 2010. Experimental correlations between destructive and non-destructive tests on ancient timber elements, Engineering Structures, Vol. 32, nr 2, 2010, s. 442-448.
 
5.
Drobiec, Ł, Grzyb, K, Zając, J 2021. Analysis of Reasons for the Structural Collapse of Historic Buildings. Sustainability 2021, 13, 10058.
 
6.
Nowogońska, B 2019. Technical Aspects of Renovation of the 16th-Century Roof Truss. Civil and Environmental Engineering Reports 29(4), 79-88.
 
7.
Nowogońska, B 2012. Diagnostyka obiektu zabytkowego o konstrukcji zespolonej szkieletowej. Przegląd Budowlany 1/2012, pp. 36-39.
 
8.
Tajchman, J, Jurecki, A 2020. Historia technik budowlanych. Wydawnictwo Naukowe PWN, Warszawa.
 
9.
Jaskowska-Lemańska, J, Wałach, D 2016. Impact of the Direction of Non-destructive Test with Respect to the Annual Growth Rings of Pine Wood, Procedia Engineering, Vol. 161, 2016, 925-930.
 
10.
Drobiec, Ł, Pająk, Z, Jasiński, R 2018. Repair problems of the wooden structure of churches. Journal of Heritage conservation, nr 53, pp. 31-44.
 
11.
Drobiec, J, Nowogońska, B 2023. Restrictions and New Possibilities of Technical and Conservation Diagnostics of Wood in Heritage Buildings. Civil and Environmental Engineering Reports 2023;33(2):106-116.
 
12.
Drobiec, Ł 2022. Stan zachowania kościołów ze ścianami z muru pruskiego na terenie północno-zachodniej Polski. Przegląd Budowlany, nr 12/2022.
 
13.
Nowak, T, Karolak, A, Sobótka, M, Wyjadłowski, M 2019. Assessment of the condition of wharf timber sheet wall material by means of selected non-destructive methods. Materials 12(9), 1532.
 
14.
Ksit, B, Szymczak-Graczyk, A, Thomas, M, Pilch, R 2022. Implementation of the Results of Experimental Studies with the Use of the Sclerometric Method of Plane Elements in Wooden Buildings. Energies 15(18):6660.
 
15.
Ksit, B, Jeziorańska, M 2021. Analiza modernizacji budynku w konstrukcji muru pruskiego. Przegląd Budowlany, nr 2/2021, pp. 21-24.
 
16.
Skrzypczak, I, Oleniacz, G, Leśniak, A, Mrówczyńska, M, Rymar, M, Oleksy, M 2023. A practical hybrid approach to the problem of surveying a working historical bell considering innovative measurement methods. Heritage Science 11, 152.
 
17.
Nowak, T, Jasieńko, J, Hamrol-Bielecka, K 2016. In situ assessment of structural timber using the resistance drilling method–evaluation of usefulness. Construction and Building Materials, 102/2016, s. 403-415.
 
18.
Drobiec, Ł 2021. Repair and renovation of the historic church in Ruda Śląska after many failures caused by mining exploitation. Civil and Environmental Engineering Reports 4 (31), 82-106.
 
19.
Szymańska-Dereń, M 2009. Kościoły zrębowe i szkieletowe województwa lubuskiego, Wyd. LWKZ, Zielona Góra.
 
20.
Warchoł, M 2005. Drewniany kościół w Osiecznicy koło Krosna Odrzańskiego autorstwa Karola Fryderyka Schinkla. Lubuskie Materiały Konserwatorskie, nr 3, pp. 120-125.
 
21.
Karta Ewidencyjna Zabytków Architektury i Budownictwa i Architektury kościoła w Osiecznicy, archiwum Wojewódzkiego Urzędu Ochrony Zabytków w Zielonej Górze.
 
22.
Hearmon, RFS 1948. The elasticity of wood and plywood, H.M.S.O, London.
 
23.
Linan, CR, de Hita, PR, de Cozar, JCG 1997. Application of ultrasonic techniques, as a nondestructive method, for the evaluation of a sixteenth century wooden ceiling, in the Marqueses de la Algaba Palace, Seville, Transactions on the Built Environment vol 26.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top