The paper presents the application of the finite element method into the modelling of soil arching. The phenomenon plays fundamental role in soil-shell flexible structures behaviour. To evaluate the influence of arching on a pressure reduction, a plain strain trapdoor under a shallow layer of backfill was simulated. The Coulomb-Mohr plasticity condition and the nonassociated flow rule were used for the soil model. The research examines the impact of the internal friction angle and the influence of the backfill layer thickness on the value of soil arching. The carried out analyses indicate that the reduction of pressures acting on a structure depends on the value of the internal friction angle, which confirms the earlier research. For a shallow backfill layer however, the reduction is only a local phenomenon and can influence only a part of the structure.
REFERENCES(9)
1.
Abdel-Sayed G., Bakht B., Jaeger L.G.: Soil-steel bridges. Design and construction, New York, McGraw-Hill Inc. 1994.
Costa Y.D., Zornberg J.G., Bueno B.S., Costa C.L.: Failure mechanisms in sand over a deep active trapdoor, Journal of Geotechnical and Geoenvironmental Engineering, 135, 11 (2009) 1741-1753.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.