ORIGINAL ARTICLE
Numerical Non-Equilibrium and Smoothing of Solutions in The Difference Method for Plane 2-Dimensional Adhesive Joints / Nierównowaga Numeryczna i Wygładzanie Rozwiazań w Metodzie Różnicowej Dla Dwuwymiarowych Połączeń Klejowych
 
 
 
More details
Hide details
1
Poznan Uniwersity of Technology, 5 M. Skłodowskiej-Curie Sq., 60-965 Poznań, Poland
 
 
Online publication date: 2016-04-29
 
 
Publication date: 2016-03-01
 
 
Civil and Environmental Engineering Reports 2016;20(1):101-134
 
KEYWORDS
ABSTRACT
The subject of the paper is related to problems with numerical errors in the finite difference method used to solve equations of the theory of elasticity describing 2- dimensional adhesive joints in the plane stress state. Adhesive joints are described in terms of displacements by four elliptic partial differential equations of the second order with static and kinematic boundary conditions. If adhesive joint is constrained as a statically determinate body and is loaded by a self-equilibrated loading, the finite difference solution is sensitive to kinematic boundary conditions. Displacements computed at the constraints are not exactly zero. Thus, the solution features a numerical error as if the adhesive joint was not in equilibrium. Herein this phenomenon is called numerical non-equilibrium. The disturbances in displacements and stress distributions can be decreased or eliminated by a correction of loading acting on the adhesive joint or by smoothing of solutions based on Dirichlet boundary value problem.
 
REFERENCES (23)
1.
Andermann F.: Tarcze prostokątne. Obliczenia statyczne, Warszawa, Arkady 1966.
 
2.
Cea J.: Approximation variationelle des problemes aux limites. Ann. Inst. Fourier, Grenoble, 14 (1964), 345-388.
 
3.
Collatz L.: Numerical solutions to differential equations Numerische Behandlung von Differentialgleichungen, Berlin-Göttingen-Heidelberg, Springer-Verlag 1953.
 
4.
Dankert J.: Numerische Methoden der Mechanik, VEB Fachbuchverlag, Leipzig 1977.
 
5.
Fichera G.: Existence Theorems in Elasticity [in:] Encyclopedia of Physics, Vol. VIa/2 Mechanics of Solids II. ed. Truesdell C., Springer-Verlag 1972.
 
6.
Forsythe G.E., Wasow W.R.: Finite - difference methods for partial differential equations, John Wiley & Sons, Inc. 1960.
 
7.
Fung Y.C.: Foundations of solid mechanics, Prentice-Hall, Inc. 1965.
 
8.
Girkmann K.: Plane girders Flächentragwerke, Wien, Springer-Verlag 1956.
 
9.
Huber M. T.: Teoria sprężystości, część I, Warszawa, PWN 1954.
 
10.
Korn A.: Sur les équation de l’ élasticité. Annales de l’école normale supérieure, 1907.
 
11.
Krzyżański M.: Partial differential equations of second order, vol. I. Monografie Matematyczne, tom 53, Warszawa, PWN 1971.
 
12.
Lapidus L., Pinder G.F.: Numerical solution of partial differential equation in science and engineering, John Wiley & Sons, INC. 1982.
 
13.
Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, Cambridge at the University Press 1959.
 
14.
Marcinkowska H.: Wstęp do teorii równań różniczkowych cząstkowych, Biblioteka Matematyczna tom 43, Warszawa, PWN 1972.
 
15.
Nowacki W.: Teoria sprężystości, Warszawa, PWN 1970.
 
16.
Orkisz J.: Metoda różnic skończonych. [w:] Kleiber M. (red.): Mechanika techniczna, tom IX. Komputerowe metody mechaniki ciał stałych, Warszawa, PWN 1995, 346-398.
 
17.
Petrowski I. G.: Lectures on Partial Differential Equations, Wiley- Interscience, 1954.
 
18.
Rapp P.: Mechanika połączeń klejowych jako płaskie zadanie teorii sprężystości, Politechnika Poznańska, Rozprawy nr 441. Wydawnictwo Politechniki Poznańskiej, Poznań 2010.
 
19.
Rapp P.: Mechanics of adhesive joints as a plane problem of the theory of elasticity. Part I: General formulation, Archives of Civil and Mechanical Engineering, 10, 2 (2010) 81-108.
 
20.
Rapp P.: Mechanics of adhesive joints as a plane problem of the theory of elasticity. Part II: Displacement formulation for orthotropic adherends. Archives of Civil and Mechanical Engineering, 15, 2 (2015) 603-613.
 
21.
Rapp P.: Stress equations for adhesive in two-dimensional adhesively bonded joints, Civil and Environmental Engineering Reports, 14, 3 (2014) 75-94.
 
22.
Sokołowski M. (red.): Mechanika techniczna, tom IV. Sprężystość, Warszawa, PWN 1978.
 
23.
Timoshenko S., Goodier J. N.: Theory of elasticity, McGraw-Hill Book Company, Inc. 1951.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top