Paper focuses on the problems of application of extreme energy principles and nonlinear mathematical programing in the theory of structural shakedown. By means of energy principles, which describes the true stress-strain state conditions of the structure, the dual mathematical models of analysis problems are formed (static and kinematic formulations). It is shown how common mathematical model of the structures optimization at shakedown with safety and serviceability constraints (according to the ultimate limit state (ULS) and serviceability limit state (SLS) requirements) on the basis of previously mentioned mathematical models is formed. The possibilities of optimization problem solution in the context of physical interpretation of optimality criterion of Rosen’s algorithm are analyzed.
REFERENCES(37)
1.
Alawdin P, Bulanov G.: Shakedown of Composite Frames Taking into Account Plastic and Brittle Fracture of Elements. Civ Environ Eng Reports. 2015;15(4). doi: 10.1515/ceer-2014-0031.
Alawdin P, Kasabutski S.: Limit and shakedown analysis of RC rod cross_sections. J Civ Eng Manag. 2009;15(1):59-66. doi: 10.3846/1392-3730.2009.15.59-66.
Alawdin P, Liepa L.: Optimal shakedown analysis of plane reinforced concrete frames according to Eurocodes. Int J Mech Mater Des. December 2015. doi: 10.1007/s10999-015-9331-0.
Atkočiūnas J, Karkauskas R.: Optmization of Elastic Plastic Beam Structures. Vilnius, Lithuania: Vilnius Gediminas Technical University; 2010. doi: 10.3846/1137-S.
Atkočiūnas J, Norkus A.: Method of fictitious system for evaluation of frame shakedown displacements. Comput Struct. 1994;50(4):563-567. doi: 10.1016/0045-7949(94)90027-2.
Atkočiūnas J, Ulitinas T, Kalanta S, Blaževičius G.: An extended shakedown theory on an elastic-plastic spherical shell. Eng Struct. 2015;101:352-363. doi: 10.1016/j.engstruct.2015.07.021.
Atkočiūnas J.: Optimal Shakedown Design of Elastic-Plastic Structures. Vilnius, Lithuania: Vilnius Gediminas Technical University; 2012. doi: 10.3846/1240-S.
Belytschko T, Liu WK, Moran B, Elkhodary K.: Nonlinear Finite Elements for Continua and Structures. II edition.; 2013. http://eu.wiley.com/WileyCDA/W....
Capurso M, Corradi L, Maier G.: Bounds on deformations and displacements in shakedown theory. In: Materiaux et Structures Sous Chargement Cyclique, Ass. Amicale Des Ingenieurs Anciencs Eleves de l’E.N.P.C. Paris; 1979:231-244.
Čyras A, Atkočiūnas J.: Mathematical model for the analysis of elasticplastic structures under repeated-variable loading. Mech Res Commun. 1984;11(5):353-360. doi: 10.1016/0093-6413(84)90082-X.
Daniūnas A, Kvedaras AK, Šapalas A, Šaučiuvėnas G.: Design basis of Lithuanian steel and aluminium structure codes and their relations to Eurocode. J Constr Steel Res. 2006;62(12):1250-1256. doi: 10.1016/j.jcsr.2006.04.018.
Kala Z.: Sensitivity analysis of the stability problems of thin-walled structures. J Constr Steel Res. 2005;61(3):415-422. doi: 10.1016/j.jcsr.2004.08.005.
Kaliszky S, Lógó J.: Plastic behaviour and stability constraints in the shakedown analysis and optimal design of trusses. Struct Multidiscip Optim. 2002;24(2):118-124. doi: 10.1007/s00158-002-0222-2.
Karkauskas R.: Optimisation of geometrically non-linear elastic-plastic structures in the state prior to plastic collapse. J Civ Eng Manag. 2007;13(3):37-41. doi: 10.1080/13923730.2007.9636436.
Koiter WT.: General Theorems for Elastic-plastic Solids. In: Sneddon IN, Hill R, eds. Progress in Solid Mechanics. Amsterdam: North-Holland; 1960:165-221. https://books.google.lt/books?....
Lange-Hansen P. Comparative Study of Upper Bound Methods for the Calculation of Residual Deformations After Shakedown. Department of Structural Engineering and Materials, Technical University of Denmark; 1998.
Rosen JB.: The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints. J Soc Ind Appl Math. 1960;8(1):181-217. doi: 10.1137/0108011.
Rosen JB. The Gradient Projection Method for Nonlinear Programming. Part II. Nonlinear Constraints. J Soc Ind Appl Math. 1961;9(4):514-532. doi: 10.1137/0109044.
Stein E, Zhang G, Mahnken R.: Shakedown analysis for perfectly plastic and kinematic hardening materials. In: CISM. Progress in Computernal Analysis or Inelastic Structures. Vienna: Springer Vienna; 1993:175-244. doi: 10.1007/978-3-7091-2626-4_4.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.