ORIGINAL ARTICLE
Possibility of Improving Air Distribution and Heat Flow Conditions in Mechanical Grate Furnaces
 
More details
Hide details
1
Faculty of Energy and Environmental Engineering, Silesian University of Technology
 
2
Retired employee of the Faculty of Civil Engineering, Architecture and Environmental Engineering, University of Zielona Góra
 
 
Online publication date: 2022-10-13
 
 
Publication date: 2022-09-01
 
 
Civil and Environmental Engineering Reports 2022;32(3):248-259
 
KEYWORDS
ABSTRACT
One group of plants commonly used for solids combustion are grate furnaces. These furnaces come in numerous design solutions, dedicated to fuels with different properties and plants with different capacities. The use of grate furnaces presents the as-yet unresolved challenge of how to ensure the most favourable air distribution along the length of the grate. The paper proposes a design solution to ensure proper air distribution along the length of the grate. An additional advantage of the proposed solution is the intensification of heat exchange in the furnace, enabling the boiler's circulating medium to be heated more efficiently. Both of the advantages allow an increase in the energy efficiency of the plant and therefore contribute to a reduction in the amount of fuel burned and CO2 emissions.
 
REFERENCES (25)
1.
Kozioł, M 2022. Możliwości substytucji węgla paliwami z odpadów w warunkach polskich [Possibilities of substitution of coal by fuels from waste under polish conditions]. Rynek energii, 3, 64–70.
 
2.
CEWEP, 2021. Municipal waste treatment in 2018. https://www.cewep.eu/waste-to-... (accessed: March 2022).
 
3.
Greinert, A, Mrówczyńska, M, Grech, R and Szefner, W 2020. The use of plant biomass pellets for energy production by combustion in dedicated furnaces. Energies 13 (2), 463. https://doi.org/10.3390/en1302....
 
4.
Variny, M, Varga, A, Rimár, M, Janošovský, J, Kizek, J, Lukáč, L, Jablonský, G and Mierka, O 2021. Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review. Processes 9, 100. https://doi.org/10.3390/pr9010....
 
5.
Madanayake, BN, Gan, S, Eastwick, C and Ng, HK 2017. Biomass as an energy source in coal co-firing and its feasibility enhancement via pretreatment techniques. Fuel Processing Technology 159, 287–305. https://doi.org/10.1016/j.fupr....
 
6.
Yin, C, Rosendahl, LA, Kær, SK 2008. Grate-firing of biomass for heat and power production. Progress in Energy and Combustion Science 34 (6), 725–754. https://doi.org/10.1016/j.pecs....
 
7.
World Bioenergy Association, 2021. Global Bioenergy Statistics 2021. Stockholm. https://www.worldbioenergy.org....
 
8.
Jones, D 2021. Global Electricity Review: H1-2021. EMBER, https://emberclimate.org/insig... (accessed: May 2022).
 
9.
Niedziński, B 2021. COP26/ Australia obiecuje zerową emisję netto do 2050 r., Indie - do 2070 r. [COP26/ Australia promises net zero emissions by 2050, India by 2070.]. Nauka w Polsce – Polska Agencja Prasowa, https://scienceinpoland.pap.pl..., (accessed: May 2022).
 
10.
Jones, D 2022. Global Electricity Review 2022. EMBER, https://emberclimate.org/insig..., (accessed: May 2022).
 
11.
Maksymowicz, A 2022. Górnictwo: Indyjska kopalnia Siarmal ma wydobywać 50 mln t węgla rocznie [Mining: The Indian Siarmal mine is expected to produce 50 million tonnes of coal annually]. Portal gospodarka i ludzie., https://nettg.pl/gornictwo/187..., (accessed: May 2022).
 
12.
Makarichi, L, Jutidamrongphana, W and Techato, K 2018. The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews 91, 812–821. doi:10.1016/j.rser.2018.04.088.
 
13.
Leckner, B and Lind, F 2020. Combustion of municipal solid waste in fluidized bed or on grate – A comparison. Waste Management 109, 94–108. https://doi.org/10.1016/j.wasm....
 
14.
Sarkar, DK 2015. Thermal Power Plant. Design and Operation. Elsevier. https://doi.org/10.1016/C2014-....
 
15.
Ozawa, M and Asano, H (ed.) 2021. Advances in Power Boilers. Elsevier. https://doi.org/10.1016/C2018-....
 
16.
Orłowski, P, Dobrzański, W and Szwarc, E 1979. Kotły parowe, konstrukcja i obliczenia [Steam boilers, construction and calculations]. Warszawa: Wydawnictwa Naukowo-Techniczne.
 
17.
Vakkilainen, EK 2017. Steam Generation from Biomass. Construction and Design of Large Boilers. Oxford: Butterworth-Heinemann.
 
18.
Koziol, J and Koziol, M 2019. Determining operating characteristics of cofiring processes in grate furnaces. Fuel 258, 116164, https://doi.org/10.1016/j.fuel....
 
19.
Scholz, R, Beckmann, M and Schulenburg, F 1996. Entwicklungsmöglichkeiten der Prozeßführung bei Rostsystemen zur Abfallbehandlung [Potential for the development of using grate systems to control waste management processes]. FDBR-Symposium. Rostock.
 
20.
Rosvold, H 2019. UK Patent Application GB 2568985 A. Altos Gasification Technology AS, Trondheim, Norway.
 
21.
Zweifel, MR and Spreiter, D 1990. European Patent Office 0 391 146 A1. W+E Umwelttechnik AG, Zurich, Switzerland.
 
22.
Merz, A, Vogg, H and Walter, R 2000. United States Patent US006038988A. Foschungszentrum Kalsruhe GmbH, Karlsruhe, Germany.
 
23.
Gross, J, Dworatzek, H and Fritsche, O 2000. Deutsches Patent und Markenamt [German Patent and Trademark Office] DE 199 10 530 A1. Saacke GmbH&Co KG, Bremen, Germany.
 
24.
Kostowski, E 2006. Przepływ ciepła [Heat flow]. Gliwice: Wydawnictwo Politechniki Śląskiej.
 
25.
Kozioł, J and Kozioł, M 2019. Urząd Patentowy Rzeczpospolitej Polskiej, zgłoszenie patentowe [Patent Office of the Republic of Poland, Patent Application] nr P.432320 [WIPO ST 10/C PL432320]. University of Zielona Góra and Silesian University of Technology.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top