ORIGINAL ARTICLE
Possibility of Wastewater Treatment Using MFC with Ni-Co Catalyst of Fuel Electrode
 
More details
Hide details
1
Opole University, Faculty of Natural Sciences and Technology, Department of Process Engineering, Dmowskiego st 7-9, 45-365 Opole, Poland
 
2
Opole University, Opole, Poland
 
 
Online publication date: 2016-07-14
 
 
Publication date: 2016-06-01
 
 
Civil and Environmental Engineering Reports 2016;21(2):131-145
 
KEYWORDS
ABSTRACT
One of the problems with microbial fuel cells is a low current density of those energy sources. Nonetheless, it is possible to increase the current density by using the catalyst for fuel electrode (anode) - as long as a low cost catalyst can be found. The possibility of wastewater treatment using the Ni-Co alloy as catalyst for MFC’s is presented in this paper. The alloys were obtained with different concentrations of Co (15 and 50% of Co). The increase of current density with Ni-Co catalyst is approximately 0,1 mA/cm2. So, a fundamental possibility wastewater treatment using the Ni-Co alloy as catalyst for microbial fuel cells was presented.
REFERENCES (45)
1.
Armour M-A., Hazarodous laboratory chemicals disposal guide, CRC Press, 2003.
 
2.
Asazawa K., Yamada K., Tanaka H., Oka A., Taniguchi M., Kobayashi T., A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles, Angewandte Chemie, 119 (42) (2007) 8170-8173.
 
3.
Berk R.S., Canfield J.H., Bioelectrochemical energy conversion, Applied and Environmental Microbiology, 12 (1964) 10-12.
 
4.
Bockris J.O’M., Reddy A.K.N., Modern Electrochemistry, Kulwer Academic/Plenum Publishers, New York, 2000.
 
5.
Bond D. R., Lovley D. R., Electricity production by Geobacter sulfurreducens attached to electrodes, Applied and Environmental Microbiology, 69 (2003) 1548-1555.
 
6.
Chaudhuri S.K., Lovley D.R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, 21 (2003) 1229-1232.
 
7.
Cohen B., The bacterial culture as an electrical half-cell, Journal of Bacteriology, 21 (1931) 18-19.
 
8.
Davis J.B., Yarbrough H.F., Preliminary experiments on a microbial fuel cell, Science, 137 (1962) 615-616.
 
9.
Grady C.P.L., Daigger G.T., Love N.G., Filipe C.D.M., Biological Wastewater Treatment: Third Edition, IWA Publishing (Co-Published with CRC Press), 2011.
 
10.
Hamnett A., Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today, 38 (4) (1997) 445-457.
 
11.
Jadhav G.S., Ghangrekar M.M., Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration, Bioresource Technology, 100 (2) 2009) 717-723.
 
12.
Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians, Enzyme and Microbial Technology, 30 (2002) 145-152.
 
13.
Kutera J., Use of wastewater from yeast factory, Scientific Papers of the Agricultural University of Wroclaw, 1996.
 
14.
Liu H., Grot S., Logan B.E., Electrochemically Assisted Microbial Production of Hydrogen from Acetate, Environmental Science & Technology, 39 (11) (2005) 4317-4320.
 
15.
Liu H., Ramnarayanan R., Logan B.E., Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environmental Science & Technology, 38 (2004) 2281-2285.
 
16.
Liu Y., Harnisch F., Fricke K., Sietmann R., Schröder U., Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure, Biosensors and Bioelectronics, 24 (1) (2008) 1006-1011.
 
17.
Logan B.E., Microbial fuel cell, Wiley & Sons (2008).
 
18.
Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Verstraete W., Rabaey K., Microbial Fuel Cells: ⃞ Methodology and Technology, Environmental Science & Technology, 40 (17) (2006) 5181-5192.
 
19.
Logan B.E., Regan J.M., Electricity - producing bacterial communities in microbial fuel cells, Trends Microbiol., 14 (2006) 512-518.
 
20.
Milewski J., Lewandowski J., Biofuels as fuels for high temperature fuel cells, Journal of Power Technologies, 93 (5) (2013) 347-353.
 
21.
Nowak A.J., Królik D., Kostecki J., Wastewater treatment in constructed wetlands, Civil and Environmental Engineering Reports, 11 (2013) 93-99.
 
22.
O’Hayre R., Cha S-W., Colella W., Prinz F.B., Fuel Cell Fundamentals, John Wiley & Sons, 2005.
 
23.
Park H.S., Kim B.H., Kim H.S., Kim H.J., Kim G.T., Kim M., Chang I.S., Park Y.K., Chang H.I., A novel electrochemically active and Fe(III)- reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7 (2001) 297-306.
 
24.
Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J., A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiology Letters, 223 (2003) 129-134.
 
25.
Płuciennik-Koropczuk E., Sadecka Z., Myszograj S., COD fractions in raw and mechanically treated wastewater, Civil and Environmental Engineering Reports, 11 (2013) 101-113.
 
26.
Rabaey K., Alterman P., Clauwaert P., De Schamphelaire L., Boon N., Verstraete W., Microbial fuel cells in relation to conventional anaerobic digestion technology, Engineering in Life Science, 6 (2006) 285-292.
 
27.
Rabaey K., Verstraete W., Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, 23 (2005) 291-298.
 
28.
Rao J.R., Richter G.J., Von Sturm F., Weidlich E., The performance of glucose electrodes and the characteristics of different biofuel cell constructions, Bioelectrochem, Bioenerg., 3 (1976) 139-150.
 
29.
Ringeisen B.R., Henderson E., Wu P.K., Pietron J., Ray R., Little B., Biffinger J.C., Jones-Meehan J.M., High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10, Environmental Science & Technology, 40 (2006) 2629-2634.
 
30.
Rolison D.R., Hagans P.L., Swider K.E., Long J.W., Role of Hydrous Ruthenium Oxide in Pt−Ru Direct Methanol Fuel Cell Anode Electrocatalysts:_ The Importance of Mixed Electron/Proton Conductivity, Langmuir, 15 (3) (1999) 774-779.
 
31.
Serov A., Kwak C., Direct hydrazine fuel cells, Applied Catalysis B: Environmental, 98 1-2 (2010) 1-9.
 
32.
Steigerwalt E.S., Deluga G.A., Cliffel D.E., Lukehart C.M., A Pt- Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst, The Journal of Physical Chemistry B, 105 (34) (2001) 8097-8101.
 
33.
Springer T.E., Wilson M.S., Gottesfield S., Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, 140 (1993) 3513-3526.
 
34.
Stolten D., Hydrogen and Fuel Cells. Fundamentals, Technologies and Applications, Wiley-VCH, 2010.
 
35.
Twigg M.V., Catalyst Handbook, Wolfe Publishing Ltd., 1989.
 
36.
Vetter K., Electrochemical kinetics, Springer-Verlag, Berlin-Gottingen- Heidelberg, (1961).
 
37.
Vielstich W., Fuel cell, Wiley Interscience, 1970.
 
38.
Wang X., Feng Y.J., Lee H., Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science & Technology, 57 (2008) 1117-1121.
 
39.
Włodarczyk B., Włodarczyk P.P., Electricity production in microbial fuel cell with Cu-B alloy as catalyst of anode, QUAESTI 2015, Civil engineering (2015) 305-308. DOI 10.18638/quaesti.2015.3.1.211.
 
40.
Włodarczyk B., Włodarczyk P.P., Porównanie skuteczności elektroutleniania w mikrobiologicznym ogniwie paliwowym z katalizatorem stalowym i napowietrzania w oczyszczaniu ścieków, Inżynieria i Ochrona Środowiska, 18 (2) (2015) 189-198.
 
41.
Włodarczyk P.P., Włodarczyk B., Powering fuel cells with crude oil, Journal of Power Technologies, 93 (5) (2013) 394-397.
 
42.
Włodarczyk, P.P., Włodarczyk, B., Analysis of the possibility of using stainless steel and copper boride alloy as catalyst for microbial fuel cell fuel electrode, Archiwum Gospodarki Odpadami i Ochrony Środowiska, 17 (1) (2015) 111-118.
 
43.
Włodarczyk, P.P., Włodarczyk, B., Possibility of using Ni-Co alloy as catalyst for oxygen electrode of fuel cell, Chinese Business Review, 14 (3) (2015) 159-167. DOI: 10.17265/1537-1506/2015.03.005.
 
44.
Włodarczyk, P.P., Włodarczyk, B., Ni-Co alloy as catalyst for fuel electrode of hydrazine fuel cell, China-USA Business Review, 14 (5) (2015) 269-279. DOI: 10.17265/1537-1514/2015.05.005.
 
45.
Zhao F., Sladea R.C.T., Varcoea J.R., Techniques for the study and development of microbial fuel cells: an electrochemical perspective, Chemical Society Reviews, 38 (2009) 1926-1939.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top