ORIGINAL ARTICLE
The Degree of Capillary Absorption Reduction as a Parameter to Classify the Effectiveness of Secondary Horizontal Waterproofing
 
More details
Hide details
1
The Faculty of Civil and Transport Engineering, Poznań University of Technology
 
 
Submission date: 2024-04-08
 
 
Final revision date: 2024-06-27
 
 
Acceptance date: 2024-06-29
 
 
Online publication date: 2024-07-10
 
 
Publication date: 2024-07-10
 
 
Corresponding author
Bartłomiej Monczyński   

The Faculty of Civil and Transport Engineering, Poznań University of Technology
 
 
Civil and Environmental Engineering Reports 2024;34(3):85-99
 
KEYWORDS
TOPICS
ABSTRACT
The dampness of the ground floors in buildings is generally a consequence of capillary rise of groundwater caused by the absence, damage or technical deterioration of the horizontal waterproofing of the masonry. Capillary absorption and damp transport are determined by the wetting properties of water relative to the material, as well as the structure and distribution of pores in the material. Chemical (injection) methods of secondary horizontal waterproofing are based on the technology of introducing injection liquid into the masonry section, which forms a lock which relies on the mechanism of capillary lumen constriction, hydrophilization, capillary sealing or a combined effect. A vital outcome of secondary horizontal waterproofing in a wall using the injection method is not only limited absorption but also its changed dynamics. The research paper describes the procedure leading to determining a criterion that allows to classify injection agents in terms of their impact on inhibiting capillary transport of damp in construction partitions.
REFERENCES (41)
1.
Szewczyk, J. 2019, Hydroizolacja elementów budowli w wybranych okresach historii architektury czyli o uszczelnieniach z nietypowych materiałów, o dawnych impregnatach, drenażach i pokrewnych rozwiązaniach budowlanych [Waterproofing of building elements in selected periods of architectural history, i.e. seals made of unusual materials, old impregnations, drainages and related construction solutions]. Białystok: Oficyna Wydawnicza Politechniki Białostockiej.
 
2.
Vitruvius Pollio, M 1999. Ten Books on Architecture. Warszawa: Pruszyński i S-ka.
 
3.
EMERISDA 2014. Summary report on existing methods against rising damp. D2.1 FINAL version 31-07-2014.
 
4.
Štastný, P et al. 2021. Analysis of moisture and salinity of historical constructions before and after the application of REMEDIATIONS. Journal of Building Engineering 41, 102758.
 
5.
Wójcik, R 2001. Hydrofobizacja i uszczelnianie przegród murowych metodą iniekcji termicznej [Anti-damp wall protection using the non-isothermal injection method]. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego.
 
6.
Karyś, J 2001. Sposoby osuszania budynków [Methods of drying buildings]. In: Ważny, J and Karyś, J (ed). Ochrona budynków przed korozją biologiczną [Protection of buildings against biological corrosion].Warszawa: Arkady, 256–279.
 
7.
Rokiel, M 2019. Hydroizolacje w budownictwie. Projektowanie. Wykonawstwo [Waterproofing in construction. Designing. Execution],Warszawa: Grupa Medium.
 
8.
Ksit, B and Monczyński, B 2009. Renowacja zawilgoconych obiektów zabytkowych na przykładzie kościoła parafialnego pw. Najświętszej Maryi Panny Wniebowziętej w Zbąszyniu [Renovation of historic buildings damaged by dampness – case study of St. Mary’s Church in Zbąszyń]. In: Kamiński, M et al. (ed). Współczesne metody naprawcze w obiektach budowlanych [Modern repair methods in buildings and consructions]. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne 267–276.
 
9.
Wójcik, R 2011. Kryteria oceny metod odtwarzania poziomych izolacji przeciwwilgociowych w murach [Criteria for assessing methods of restoring horizontal waterproofing in walls], Materiały Budowlane, 3, 2–3, 7.
 
10.
Hölzen, F-J 2006. Zur Wirksamkeit von Injektionsmitteln an Fallbeispielen [Case studies on the effectiveness of injectables]. Injektionsmittelabdichtung [Injection waterproofing]. Vorträge 7. Dahlberg-Kolloquium – 14. und 15. September 2006, Stuttgart, Germany, 117–131.
 
11.
Franzoni, E et al. 2020. Which methods are suitable to assess the effectiveness of chemical injection treatments in the laboratory? Journal of Building Engineering 29, 101131.
 
12.
Konarski, B and Jabłoński, R 2000. Zabezpieczanie obiektów budowlanych przed zawilgacaniem a skuteczność osuszania metodami iniekcyjnymi [The Protection of Buildings against Recurring Dampness and the Effectiveness of Drying with Injection Methods]. Ochrona zabytków 208, 93–99.
 
13.
Francke, B 2008. Izolacje przeciwwilgociowe murów wykonane metodą iniekcji – wymagania techniczne [Waterproofing of walls made by injection - technical requirements]. Materiały Budowlane 3, 5–6, 48.
 
14.
WTA Guideline 4-10-15/D. Injection techniques with certified injection materials against capillary moisture transport.
 
15.
BuFas-IM-01/2009. Injektionsmittel – Horizontalabdichtungen [Injection agents – horizontal waterproofing].
 
16.
Venzmer, H et al. 2008. Zur Prüfung der Effizienz von Injektionsmittel-Horizontalabdichtungen [For testing the efficiency of injection agents and horizontal waterproofing]. In: Venzmer, H (ed). Europäischer Sanierungskalender 2008: Holzschutz, Bautenschutz, Bauwerkserhaltung, Bauwerksinstandsetzung, Restaurierung und Denkmalpflege [European renovation calendar 2008: wood protection, building protection, building preservation, building repair, restoration and monument preservation]. Berlin · Wien · Zürich: Beuth Verlag GmbH, 7–40.
 
17.
Frössel, F 2007. Osuszanie murów i renowacja piwnic [Drying of walls and renovation of basements]. Warszawa: Polcen.
 
18.
Stöcker, H 2015. Nowoczesne kompendium fizyki [Modern compendium of physics]. Warszawa: Wydawnictwo Naukowe PWN.
 
19.
Atkins, P. and de Paula, J 2019. Chemia fizyczna [Physical chemistry]. Warszawa: Wydawnictwo Naukowe PWN.
 
20.
Homann, M 2017. Feuchtenschutz [Moisture protection]. In: Willems, W M (ed). Lehrbuch der Bauphysik [Textbook of building physics]. Wiesbaden: Springer Vieweg, 155–304.
 
21.
Siebold, A et al. 1997. Capillary rise for thermodynamic characterization of solid particle surface. Journal of Colloid and Interface Science 186, 60–70.
 
22.
Adamson, A W 1963, Chemia fizyczna powierzchni [Physical chemistry of surfaces]. Warszawa: Państwowe Wydawnictwo Naukowe.
 
23.
Pogorzelski, J A 1976. Fizyka cieplna budowli [Thermal physics of buildings]. Warszawa: Wydawnictwo Naukowe PWN.
 
24.
Washburn, E W 1921. The dynamics of capillary flow. Physical Review 17, 273–283.
 
25.
Hołownia-Kędzia, D 2012. Wykorzystanie metody wzniesienia kapilarnego do pomiarów zwilżalności układów rzeczywistych [Use of the capillary rise method to measure the wettability of real systems]. Gdańsk: Politechnika Gdańska.
 
26.
de Gennes, P-G et al. 2004. Capillarity and Wetting Phenomena. Drops, Bubbles, Pearls, Waves. New York: Springer.
 
27.
Pogorzelski, J A 2005, Zagadnienia cieplno-wilgotnościowe przegród budowlanych [Thermal and humidity issues of building partitions]. In: Klemm, P (ed). Budownictwo ogólne. Tom 2. Fizyka budowli [General construction. Volume 2. Physics of buildings], Warszawa: Arkady, 103–364.
 
28.
Balak, M. and Pech, A 2017. Mauerwerkstrockenlegung: Von den Grundlagen zur praktischen Anwendung [Drylaying masonry: From the basics to practical application]. Basel: Birkhäuser Verlag GmbH.
 
29.
EN ISO 9346:2009. Hygrothermal performance of buildings and building materials - Physical quantities for mass transfer - Vocabulary.
 
30.
EN ISO 15148:2004. Hygrothermal performance of building materials and products - Determination of water absorption coefficient by partial immersion.
 
31.
Garbalińska, H. and Narodowska, K. 2017. Wpływ składu mieszanki i wyjściowego zawilgocenia kruszywa lekkiego na sorpcyjność kapilarną betonu keramzytowego [Influence of mix composition and initial moistness of lightweight aggregate on capillary sorption of expanded clay aggregate concrete]. Czasopismo Inżynierii Lądowej, Środowiska i Architektury - Journal of Civil Engineering, Environment and Architecture. JCEEA 64, 279–286.
 
32.
Hall, C and Hoff, W D 2002. Water Transport in Brick, Stone and Concrete. London and New York: Taylor & Francis.
 
33.
EN 772-11:2011. Methods of test for masonry units - Part 11: Determination of water absorption of aggregate concrete, autoclaved aerated concrete, manufactured stone and natural stone masonry units due to capillary action and the initial rate of water absorption of clay masonry units.
 
34.
EN 1925:2001. Natural stone test methods - Determination of water absorption coefficient by capillarity.
 
35.
EN 15801:2010. Conservation of cultural property - Test methods - Determination of capillarity water absorption.
 
36.
EN 1015-18:2003. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar.
 
37.
ASTM C1585-04. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes.
 
38.
Wyrwał, J 1989. Ruch wilgoci w porowatych materiałach i przegrodach budowlanych [Moisture movement in porous materials and building partitions]. Opole: Dział Wydawnictw Wyższej Szkoły Inżynierskiej w Opolu.
 
39.
Karagiannis, N. et al. 2015. Effect of Temperature on Water Capillary Rise Coefficient of Building Materials. International Symposium of Building Pathology, Porto, Portugal.
 
40.
Monczyński, B. 2022. Nowy parametr oceny skuteczności preparatów iniekcyjnych do wykonywania wtórnych hydroizolacji poziomych w murach ceglanych [A new parameter for assessing the effectiveness of injection agents for secondary horizontal waterproofing in brick walls]. Inżynieria i Budownictwo 9–10, 402–405.
 
41.
JCGM 100:2008 (2014). Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM).
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top