ORIGINAL ARTICLE
The Influence of Trace Elements on Anaerobic Digestion Process
More details
Hide details
1
University of Zielona Góra, Poland
Online publication date: 2019-01-03
Publication date: 2018-12-01
Civil and Environmental Engineering Reports 2018;28(4):105-115
KEYWORDS
ABSTRACT
The article is the literature review on the importance of trace elements supplementation in the methane fermentation process. The production of biogas, including methane, as well as the efficiency of the process depend on the substrates to be fermented. Substances supplied with the substrate as well as products generated in the decomposition phases can inhibit the process. The factor limiting fermentation is the rate of enzymatic hydrolysis of substrates. Certain compounds, such as alkanes, alkenes, biphenol, aromatic hydrocarbons, alcohols and ketones, are not directly susceptible to hydrolysis. They undergo this process in the presence of extracellular enzymes.
The instability of the methane fermentation process described in the literature may be related to the lack of trace elements or micronutrients. Trace elements (Co, Ni, Cu, Mn, Fe, Zn, Se and Mo) are components of enzymes, some bacterial nucleic acids and essential for the synthesis of vitamins. The role of some trace elements, eg. Fe or Mo, has been well understood, while the importance of others still needs to be clarified. Literature data indicate that supplementing trace elements not only prevents process inhibition, but can also improve its performance by providing higher methane production.
REFERENCES (34)
1.
Banks C.J.; Zhang Y.; Jiang Y., Heaven S.: Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technology, 104 (2012) 127-135.
2.
Bao Y., Dongling Z.,Aidang S.,Ziyang L.,Haiping Y., Xiaoting H.,Wenxiang Y., Xiaohu D, Nanwen Z.: Methane-rich biogas production from waste-activated sludge with the addition of ferric chloride under a thermophilic anaerobic digestion system 2015, RSC Adv., 5:38538-38546, DOI: 10.1039/c5ra02362a.
3.
Deublein D., Steinhauser A.: Biogas from waste and renewable resources. Wiley-VCH Verlag 2008, ISBN 9783527318414.
4.
Espinosa A., Rosas L., Ilangovan K., Noyola A.: Effect of trace metals on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Science Technology, 32(1995)121-129.
5.
Evranos B., Demirel B.: The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage. Environmental Technology, 36 (2015)1556-1562.
6.
Lin C.Y., Chou J., Lee Y.S.: Heavy metal-affected degradation of butyric acid in anaerobic digestion. Bioresource Technology, 65(1998) 159-161.
7.
Feng X.M., Karlsson A., Svensson B.H., Bertilsson S.: Impact of trace element addition on biogas production from food industrial waste - linking process to microbial communities. FEMS Microbiology Ecology, 74 (2010) 226-240.
8.
Friedmann H.C., Klein A., Thauer R.K.: Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase. FEMS Microbiology Review, 7 (1990) 339-348.
9.
Glass J.B., Orphan V.J.: Trace metal requirements formicrobial enzymes involved in the production and consumption of methane and nitrous oxide. Front. Microbiology, 3,61 (2012).
10.
Gustavsson J., Shakeri Yekta S., Sundberg C., KarlssonA., Ejlertsson J., Skyllberg U., et al: Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Applied Energy, 112 (2013) 473-477.
11.
Gustavsson J., Yekta S.S., Karlsson A., Skyllberg U., Svensson B.H.: Potential bioavailability and chemical forms of Co and Ni in the biogas process-an evaluation based on sequential and acid volatile sulfide extractions. Engineering Life Science 13 (2013) 572-579.
12.
Hochheimer A., Schmitz R.A., Thauer R.K., Hedderich R.: The tungsten formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum contains sequence motifs characteristic for enzymes containing molybdopterin dinucleotide. Eur. J. Biochem., 234 (1995) 910- 920.
13.
Khanal S.K.: Anaerobic for bioenergy production. Wiley-Blackwell, A John Wiley&Sons Publications, 2008, ISBN 9780813823461.
14.
Kim M., Ahn Y.-H., Speece R.E.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research, 36 (2002)4369-4385.
15.
Langenhoff A.A.M., Brouwers-Ceiler D.L., Engelberting J.H.L., Quist J.J., Wolkenfelt J.G.P.N., Zehnder A.J.B., et al.: Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiology Ecological, 22 (1997)119-127.
16.
Merchant S.S., Helmann J.D.: Elemental economy: Microbial strategies for optimizing growth in the face of nutrient limitation. In: Robert, K.P. (Ed.), Advances in Microbial Physiology. Academic Press, 2012, 91–210.
17.
Muller V.: Energy conservation in acetogenic bacteria. Applied and Environmental Microbiology, 69,11(2003) 6345-6353.
18.
Murakami E., Ragsdale S.W.: Evidence for intersubunit communication during acetylo-CoA cleavage by the multienzyme Co dehydrogenase/acetyl- CoA synthase complex from methanosarcina thermophila. The Journal of Bilogical Chemistry, 275,7(2000)4699-4707.
19.
Myszograj S.: Produkcja metanu wskaźnikiem oceny biodegradowalności substratów w procesie fermentacji metanowej/Methane production as an indicator of the biodegradation of substrates in the methane fermentation process., Annual Set the Environmental Protection, 13,2 (2011)1245-1259.
20.
Myszograj S.: Biogas production from thermaly disintegrated excess sewage sludge and municipal solid waste, 2017, Wydawnictwo Instytutu Inżynierii Środowiska Uniwersytetu Zielonogórskiego, ISBN: 9788393761999.
21.
Niu Q., Qiao W., Qiang H., Li Y.Y.: Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia. Bioresource Technolology, 146 (2013) 223-233.
22.
Pobeheim H., Bernhard M., Johansson J., Guebitz G.: Influence of trace elements on methane formation from a synthetic model substrate for maize silage, Bioresource Technology 101(2010) 836-839.
23.
Rother M., Krzycki J.A.: Selenocysteine, pyrrolysine, and unique energy metabolizm of methanogenic Archaea. Archaea, 2010, ID: 453642.
24.
Scherer P., Lippert H., Wolff G.: Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biology Trace Elements Research, 5(1983) 149-163.
25.
Sung S., Liu T.: Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53,1 (2003)43-52.
26.
Takashima M., Shimada K., Speece R.E.: Minimum requirements for trace metal (iron, nickel, cobalt, and zinc) in thermophilic and mesophilicmethane fermentation from glucose. Water Environmental Research, 83 (2011)339- 346.
27.
Uemura S.: Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. International Journal of Environmental Research and Public Health, 4 (2009) 33-40.
28.
Valorgas -Valorisation of food waste to biogas Project 241334 Seventh framework programme theme FP7ENERGY.2009.3.2.2 Biowaste as feedstock for 2nd generation www.valorgas.soton.ac.uk.
29.
Vintiloiu A., Boxriker M., Lemmer A., Oechsner H., Jungbluth T., Mathie, E., et al: Effect of ethylenediaminetetraacetic acid (EDTA) on the bioavailability of trace elements during anaerobic digestion. Chemical Engineering Journal, 223 (2013) 436-441.
30.
Wencheng M., Hongme X., Dan Z. Fengyue Q., Hongjun H., Yuan Y.: Effects of different states of Fe on anaerobic digestion: a review. Journal of Harbin Institute of Technology, 22,6(2015) 69-75. DOI: 10.11916/j.issn.1005-9113.2015.06.010.
31.
Williams R.J.P., Fraústo da Silva J.J.R.: The distribution of elements in cells. Chemical Review, 200–202 (2000) 247-348.
32.
Zandvoort M.H., Geerts R., Lettinga G., Lens, P.N.L.: Methanol degradation in granular sludge reactors at sub-optimal metal concentrations: role of iron, nickel and cobalt. Enzyme and Microbial Technology, 33 (2003) 190-198.
33.
Zhang L., Ouyang W., Aimin L.: Essential role of trace elements in continuous anaerobic digestion of food waste. Procedia Environmental Sciences,16 (2012) 102-111.
34.
Zitomer D., Johnson C., Speece R.: Metal stimulation and municipal digester thermophilic/mesophilic activity. J. Environmental Engineering, 134 (2008) 42-47.