ORIGINAL ARTICLE
The Influence of Various Types of Bracing on Force Distribution in Braced Barrel Vaults
 
More details
Hide details
1
Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Poland
 
2
The President Stanislaw Wojciechowski Calisia University, Poland
 
 
Online publication date: 2022-10-13
 
 
Publication date: 2022-09-01
 
 
Civil and Environmental Engineering Reports 2022;32(3):19-35
 
KEYWORDS
ABSTRACT
In this paper the authors analysed four single-layered braced barrel vaults with different types of bracing. Each braced barrel vault covered the area of 20 m × 28 m and was made from steel hollow sections. The static-strength analyses of the structures were conducted using the Autodesk Robot Structural Analysis program, taking into account self-weight, glass cover, snow load and wind load. In the case of wind load, wind pressure perpendicular to the longitudinal wall was determined in accordance with the EN 1991-1- 4 standard. However, the standard does not specify how to calculate wind pressure perpendicular to a gable wall for braced barrel vaults. For this reason, two variants suggested by the authors of this article were analysed for this direction of the wind. The influence of the type of bracing on force distribution in a braced barrel vault and on material consumption was analysed. The impact of the gable wall boundary conditions on force distribution in the braced barrel vault was also evaluated. Both the bracing type and the boundary conditions had an impact on the force distribution in the analysed braced barrel vault.
REFERENCES (30)
1.
Ramaswamy, GS, Eekhout, M and Suresh, GR 2002. Analysis, design and construction of steel space frames. London: Thomas Telford.
 
2.
Gwóźdź, M 2007. Problemy projektowe współczesnych konstrukcji aluminiowych. Czasopismo Techniczne Z4-A, 281–286.
 
3.
Kołodziej, S and Marcinowski, J 2018. Experimental and numerical analyses of the buckling of steel, pressurized, spherical shells. Advances in Structural Engineering 21(16), 2416–2432, https://doi.org/10.1177/136943....
 
4.
Błażejewski, P 2022. Development of a procedure for the determination of the buckling resistance of steel spherical shells according to EC 1993-1-6. Materials 15, article 25, https://doi.org/10.3390/ma1501....
 
5.
Makowski, ZS 1985. Analysis, design and construction of braced barrel vaults. London: Elsevier.
 
6.
Szmit, R and Sędrowska, E 2017. Analiza wybranych dwuwarstwowych stalowych przekryć walcowych [Structural analysis of some double-layer steel barrel vaults]. Materiały Budowlane 542(10), 38–40, https://doi.org/10.15199/33.20....
 
7.
Kurzawa, Z 2011. Stalowe konstrukcje prętowe. Część II: Struktury przestrzenne, przekrycia cięgnowe, maszty i wieże. Poznań: Wydawnictwo Politechniki Poznańskiej.
 
8.
Kowal, Z 1975. Wybrane działy z konstrukcji metalowych. Część III: Zbiorniki, płyty fałdowe i warstwowe, struktury prętowe, budynki wysokie. Wrocław: Politechnika Wrocławska.
 
9.
Parke, G and Behnejad, SA 2014. Zygmunt Stanisław Makowski: A pioneer of space structures. Architectus 4(40), 33–40, https://doi.org/10.5277/arc140....
 
10.
Grzywiński, M 2015. Optimization of double-layer braced barrel vaults. Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series, 15(2), article 06. https://doi.org/10.1515/tvsb-2....
 
11.
Szmit, R 2021. Projektowanie i analiza stalowych jednowarstwowych przekryć walcowych. Przegląd budowlany 7–8, 73–76.
 
12.
Rebielak, J 2015. Design of roof cover structures by help of numerical models defined in formian. Journal of Civil Engineering and Architecture 9, 245–256. https://doi.org/10.17265/1934-....
 
13.
Banachowicz, M and Januszkiewicz, K 2019. Curvilinear glass technologies in the historical urban environment. A new glass city-event in public space. SETSCI Conference Proceedings 4(7), 215–224. https://doi.org/10.36287/setsc....
 
14.
Kevadiya, SM and Bhavsar, Z 2020. Parametric study of braced barrel vault structure to cover large span. International Research Journal of Engineering and Technology 7(6), 4464–4470.
 
15.
Łubiński, M and Żółtowski, W 2004. Konstrukcje metalowe, Część II. Warszawa: Arkady.
 
16.
Polus, Ł 2012, Pasaż handlowy przykryty kopułą walcową, praca magisterska. Master Thesis. Poznan University of Technology, Poland.
 
17.
Chybinski, M, Polus, L and Kloj, M 2019. Fire resistance of the rafter used in the steel portal frame. IOP Conference Series: Materials Science and Engineering 471, article 052082. https://doi.org/10.1088/1757-8....
 
18.
Malendowski, M, Glema, A, Kurzawa, Z and Polus, L 2015. Mechanical Response under Natural Fire of Barrel Shape Shell Structure. Journal of Structural Fire Engineering 6(1), 59–66. https://doi.org/10.1260/2040-2....
 
19.
Polus, L, Szumigala, M, Kurzawa, Z and Malendowski, M 2013. CFD modelling of the braced barrel vault made from rectangular hollow sections in natural fire. Proceedings of International Conference Application of Structural Fire Engineering, 19–20 April 2013, Prague, Czech Republic.
 
20.
Chodor, L. 2016. Przekrycia hal i galerii. In: XXXI Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji. Naprawy i wzmocnienia konstrukcji budowlanych. Konstrukcje Metalowe, posadzki przemysłowe, lekka obudowa, rusztowania, Szczyrk, 24–27 lutego 2016 r., Polski Związek Inżynierów i Techników Budownictwa, Oddział w Katowicach, 25–202.
 
21.
Chrust, J 2022. A braced barrel vault roof over a car showroom parking lot. Master Thesis. Poznan University of Technology, Poland.
 
22.
Piórecki, W 2022. A braced barrel vault roof over a market. Master Thesis. Poznan University of Technology, Poland.
 
23.
Stajkowska, W 2022. A braced barrel vault roof over a restaurant winter garden. Master Thesis. Poznan University of Technology, Poland.
 
24.
Garasz, P 2022. A braced barrel vault roof over a culture passage in a park. Master Thesis. Poznan University of Technology, Poland.
 
25.
Free Form System, Novum Structural System, data sheet.
 
26.
EN 1991-1-3, Eurocode 1: Actions on structures, Part 1-3: General actions – Snow Loads, Brussels.
 
27.
EN 1991-1-4, Eurocode 1: Actions on structures, Part 1-4: General actions – Wind actions, Brussels.
 
28.
EN 1990, Eurocode 0: Basis of Structural Design, Brussels.
 
29.
Marcinowski, J 1997. Large deflections of shells subjected to an external load and temperature changes. International Journal of Solids and Structures 34(6), 755–768.
 
30.
Lytvyn, O, Sakharov jr., V, Marcinowski, J and Sakharov, V 2020. Destrukcyjny wpływ temperatury na eksploatację przekryć stalowych dużych rozpiętości. Builder 04(273). https://doi.org/10.5604/01.300....
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top