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Abstract 

Roads, bridges, railways, poles, and power lines are one of main elements of technical infrastructure. Their proper 

condition is essential for ensuring people, goods, and electricity transportation. Inventory is a crucial process for 

maintaining the health of technical infrastructure. Conducting inventory with traditional surveying techniques, 

such as Global Navigation Satellite Systems (GNSS) or trigonometry, is both time and money consuming. In recent 

years, modern remote sensing techniques like LiDAR (Light Detection and Ranging) and aerial and ground based 

imaging have been employed for inventory purposes. These methods enable data collection over large areas, 

reducing both the time and cost of measurement processes. Data from these devices is often processed in 

conjunction with artificial intelligence algorithms that assist in processing large data sets. This paper aims to 

introduce deep learning (DL) algorithms for inventory purposes using object detection with utility poles as a case 

study. The research was conducted using empirical data. A key element in training a DL model is the optimal 

selection of hyperparameters. During the study, ten models were trained, and their performance was compared 

based on selected metrics. For this study, a dataset of 1,736 original utility pole images was used. To augment the 

data, new images were created through rotation and mirroring. The best model achieved the following results: 

Precision = 98.82%, Recall = 97.29%, F1-score = 98.05%, mAP50 = 97.92%, mAP75 = 89.93%. The performance 

of the model gives a solid base for further implementation of DL object detection techniques for inventory of 

technical infrastructure. 
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1. INTRODUCTION 

The proper condition of technical infrastructure—such as roads, bridges, railways, poles, and power 

lines—is essential for the efficient transportation of goods, people, and electricity. To ensure the 

integrity of these elements, conducting periodic inventories is crucial [1]. Recently advanced 
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measurement techniques, like LiDAR (Light Detection And Ranging) [2] and imaging technologies [3], 

have been used for inventory purposes. These techniques enable data gathering across vast areas in a 

shorter time compared to classical surveying techniques like Global Navigation Satellite Systems 

(GNSS) [4]. The primary challenge of using modern measurement techniques is the time required for 

post-processing the collected data. To accelerate this process, Artificial Intelligence (AI) algorithms can 

be utilized [5]. 

AI algorithms can be used for tasks such as classification [6], segmentation [7] and object 

detection [8]. Among AI algorithms two subsets can be distinguished: machine learning and deep 

learning. 

Machine learning (ML) “is the technique that improves system performance by learning from 

experience via computational methods” [9]. The idea of machine learning is to develop algorithms 

capable of making predictions on new data based on historical data. This subset of AI is used for tasks 

such as classification and segmentation and includes algorithms such as: Support Vector Machine 

(SVM) [10], Random Forest (RF) [11] and k-Nearest Neighbour (kNN) [12].    

Deep learning (DL) is a specialized subset of machine learning. DL models are inspired by the 

structure and functionality of the brain. They use artificial neural networks, which are composed of 

layers of interconnected nodes called neurons. These networks can automatically learn hierarchical 

representations of data, enabling the model to extract features and patterns at multiple levels [13]. The 

example structure of artificial neural network is presented on Fig. 1. Each neuron from one layer is 

connected to all neurons from previous layer via connections. Each connection has assigned weight. The 

last layer is called the output layer and contains possible outputs. Each neuron (except those in input 

layer) makes calculations based on input values (from other neurons), weights and biases (Fig. 2). Then 

the activation function is applied to the output, which allows networks to learn non-linear patterns. Deep 

learning models are used for e.g. speech recognition, object detection, text analysis tasks, and linguistic 

models. 

 

 
Fig. 1. Example structure of Artificial Neural Network [14]  



IMPLEMENTATION OF OBJECT DETECTION ALGORITHMS IN THE INVENTORY OF TECHNICAL 

INFRASTRUCTURE, CASE STUDY OF UTILITY POLES DETECTION 

179 

 
 

  
Fig. 2. Example of a close-up view of the neuron: x1, x2, x3 – input values from previous layer; w1, w2, w3 – 

weights assigned to the connections; y – calculated value of neuron [15] 

In this research, the authors introduce an approach for detecting utility poles through DL object 

detection. The ultimate objective is to develop an algorithm capable of extracting specific information 

about poles from images, such as detection of pole cracking, insulator breakages and other failures. This 

paper presents the first step in creating that algorithm, focusing on the identification and extraction of 

utility poles from images. 

The architecture of DL models can differ depending on the task they are designed for. Object 

detection models commonly use Convolutional Neural Networks (CNNs) [16]. CNNs are composed  of 

multiple types of layers, among which three main types can be distinguished (Fig. 3):  

● Convolutional layer: This layer applies filters (also called kernels) of a specified size to the input 

image. The filter slides over the image and performs calculations on pixels. As a result, a feature 

map is generated,  representing the presence of specific features in the input image [16]. 

● Pooling layer: This layer is used to downsample feature maps. Similar to the convolutional layer it 

applies filters of a specified size over the feature map. This layer reduces the spatial dimensions 

(width and height) of the feature map [17];  

● Fully-connected layer: This layer connects each neuron from one layer to every neuron in the next 

layer. It enables the model  to perform classification tasks based on features extracted by the 

preceding layers [18]. 
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Fig. 3. Convolutional Neural Network [19] 

2. METHODOLOGY 

For utility object detection the YOLO (You Only Look Once) model [20] was selected. Number of 

images collected during inventory purposes can reach substantial sizes. That’s why the chosen model 

must be fast and accurate. The YOLO model is known for its  short detection time and is widely used 

for a wide range of applications, including real-time object detection. For the purpose of utility poles 

detection version 8 of the YOLO model was employed  [21]. This version offers a well-balanced trade-

off between speed and performance. This section  is divided into three subsections: data collection, 

model training and model evaluation. 

2.1. Data collection  

Images of utility poles were collected using ground-based imaging techniques, resulting in a total of 

1,736 original images. Images were collected using three cameras: the SONY DSC-HX10V, Xiaomi 

Redmi 4X, and Xiaomi MI 8 Lite, with image resolutions of 2592x1944, 3210x4160, and 3024x4032, 

respectively. Photos were taken under various lighting conditions, from different angles, and from 

different positions. To augment the dataset, additional images were generated by applying rotation and 

mirroring. Rotation was applied to both the original and mirrored images at 90°, 180°, and 270° angles 

(Fig. 4). To reduce the model’s susceptibility to false positives, 4,964 random images from the Common 

Objects in Context (COCO) dataset [22] (a large-scale dataset used for object detection, segmentation, 

and captioning), which did not contain utility poles, were added to the collected data (Fig. 5). Ultimately, 

the dataset comprised 18,849 images. This dataset was then divided into three subsets: training, 

validation, and test datasets (Table 1). All variations of the same image were assigned to the same subset 

to prevent the model from learning the patterns. 

Table 1. Collected data 

 Test Train Val SUM 

Images in dataset 2536 14529 1784 18849 

Utility poles images 1536 10968 1384 13888 

Coco dataset images 1000 3561 400 4961 
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           Original image      Mirrored image    Rotated image 

Fig. 4. Labeled images 

 
Fig 5. Example images from COCO dataset 

2.2. Model training  

A key factor in training a deep learning (DL) model is the optimal selection of hyperparameters. 

Hyperparameters are parameters that define the model’s structure and govern  how the model is trained 

[23]. Hyperparameters used in this study are listed and explained below:  

● Number of epochs [24]: Specifies the number of times the entire training dataset is passed 

through the model during training; 

● Optimization algorithm [25]: An algorithm used to minimize the model’s loss function by 

updating the weights in order to improve models performance. The loss function measures the 

error between predicted and true values. 

● Learning rate [26]: Controls the step size of the optimization algorithm. A small value slows the 

training process and risks of stucking in local minima. A large value can cause the model to  

overshoot the minimum. 
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● Cosine learning rate scheduler [27]: Adjusts the learning rate during the training process. A 

cosine learning rate scheduler gradually reduces the learning rate following a cosine curve 

during training. 

● Early stopping [28]: Halts the training process when the model’s performance stops improving. 

● Batch size [29]: Refers to the  number of training samples processed together in one iteration 

during model training. 

In this study, 10 models with varying hyperparameter configurations were trained (Table 2). The 

researchers focused on the following hyperparameters:  

● Optimization algorithm, 

● Learning rate, 

● Cosine learning rate scheduler. 

The number of epochs was set to 300, with early stopping applied after 50 epochs if no significant 

progress was observed. The batch size was set to 100, which was optimal for the hardware used 

(Graphics processor: NVIDIA GeForce RTX 3090). For all remaining hyperparameters, default values 

were applied. Two models were trained with automatically selected hyperparameters (marked as Auto* 

in Table 2), with and without the use of the cosine learning rate scheduler. The variations in 

hyperparameters were as follows: 

● Optimization algorithm: Stochastic Gradient Descent (SGD) [30] computes the gradient and 

updates the weights using single randomly selected training example or a small batch, Adaptive 

Moment Estimation with Weight Decay (AdamW) [31] utilizes adaptive learning rates derived 

from the first and second moments of gradients. Additionally it incorporates weight decay, 

which adds  penalty to large weights to prevent overfitting; 

● Learning rate: 0.01, 0.001; 

● Cosine learning rate scheduler: True, False. 

 

Table 2. Trained models 

Model Optimizer Learning rate 
Cosine learning 

rate scheduler 
Training time [h] 

Train31 Auto* Auto* False 6 

Train32 Auto* Auto* True 8 

Train33 SGD 0.01 False 10 

Train34 SGD 0.01 True 9 

Train35 SGD 0.001 False 5 

Train36 SGD 0.001 True 5 

Train37 AdamW 0.01 False 6 

Train38 AdamW 0.01 True 7 

Train39 AdamW 0.001 False 6 

Train40 AdamW 0.001 True 10 

*Auto:  

optimizer: SGD, lr=0,01, momentum=0,9 with parameter groups 57 weight(decay=0,0), 64 

weight(decay=0,00078125), 63 bias(decay=0,0). 
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2.3. Model evaluation  

Performance of the trained models was evaluated based on four metrics commonly used in DL: 

Precision, Recall, F1-score and mean Average Precision (mAP) with Intersection over Union (IoU) [32] 

over 50 (mAP50) and 75 (mAP75) percentage:  

● Precision (2.1) – the percentage of correct positive predictions from all positive predictions 

made by the model [33]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                           (2.1) 

Where: TP – True Positive, FP – False Positive 

● Recall (2.2) – the percentage of correct positive predictions from all predictions that the model 

should have made [33]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                (2.2) 

Where: TP – True Positive, FN – False Negative 

● F1-score (2.3) – combines precision and recall to correctly estimate the model’s trustworthiness 

[34]. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                               (2.3) 

● Mean Average Precision – the mean of Average Precision (AP) (2.4) across all classes [35]. AP 

is the area under the Precision-Recall (PR) curve [36].  

𝐴𝑃 =  ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)𝑑𝑅𝑒𝑐𝑎𝑙𝑙                                               
1

0
(2.4) 

 

3. RESULTS 

All the models achieved very good results in terms of selected evaluation metrics. In terms of Precision 

(Fig. 6), Recall (Fig. 7) and F1-score (Fig. 8) all models achieved values above 95%. The different 

colours in Figure 6, Figure 7 and Figure 8 correspond to the different optimisation algorithms. The 

highest values were achieved by model “Train32” with scores of Precision, Recall and F1-score: 

98.82%, 97.29%, 98.05% respectively. For mAP50 the highest value was 98.40% achieved by model 

“Train39”, for mAP75, model “Train31” reached score of 91.93%. All metrics are shown in Table 3. 

Sample results of pole detection on the test dataset are shown in Fig. 9. Each image in Fig. 9 from a) to 

h) represents detected bounding box around the utility pole together with a label and confidence score 

in top left corner of the bounding box. Images a) and b) represent normal images of utility poles. Images 

c) and d) shows utility poles rotated by approximately 90°. Image e) shows a utility pole at an oblique 

angle. Images f), g) and h) shows utility poles rotated by approximately 270°. 
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Fig. 6. Precision values of trained models 

 
Fig. 7. Recall values of trained models 
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Fig. 8. F1-scores of trained models 

Table 3. Values of evaluation metrics of trained models 

  Train31 Train32 Train33 Train34 Train35 Train36 Train37 Train38 Train39 Train40 

Precision 

[%] 
97.83 98.82 98.43 97.89 98.42 98.23 97.39 97.52 98.63 98.16 

Recall [%] 96.59 97.29 96.78 96.33 96.16 96.46 96.07 96.20 97.10 96.59 

F1 [%] 97.20 98.05 97.60 97.10 97.27 97.33 96.72 96.85 97.86 97.36 

mAP50 [%] 97.08 97.92 97.41 97.44 97.79 97.77 97.34 97.73 98.41 97.80 

mAP75 [%] 91.93 89.93 88.90 89.09 88.35 88.95 91.04 90.23 90.91 89.76 

Analyzing Table 3, one can notice that models present similar results varying up to 1-3% points 

in terms of individual metric. The model “Train32” with highest values in terms of Precision, Recall, 

and F1-score was trained with automatically selected hyperparameters and using cosine learning rate 

scheduler (Table 2). In terms of mAP50 it was surpassed only by the model “Train39”. In terms of 

mAP75 models: “Train31”, “Train37”, “Train38”, and “Train39” achieved higher scores. 
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                                           a)                                                                                          b)  

 
                                         c)                                                                                          d)  
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                                          e)                                                                                          f)  

 
                                         g)                                                                         h)  

Fig. 9. Sample results of the utility poles detection on the test dataset: the label contains name of object and 

confidence score of detection. Subfigures contain a detection of:  a) and b) utility pole,  c) utility pole rotated 

90°, d) utility pole rotated 90°, e) utility pole in oblique angle, f), g) and h) utility pole rotated 270° 

4. CONCLUSIONS 

Processing data acquired through modern measurement techniques can be very time-consuming. The 

results obtained in this study clearly demonstrate that AI models can be employed to process the data, 

significantly saving both time and money. However, depending on the specific purpose of the inventory, 

different metrics should be prioritized. If the objective is identifying poles, a good leading metric would 

be the F1-score. Conversely, if the goal is to extract the entire object from the image, the mAP with 

satisfying IoU threshold is a more appropriate metric. 

In this case study on utility pole detection, the model "Train32" achieved the best results in terms 

of Precision, Recall, and F1-score, with values of 98.82%, 97.29%, and 98.05%, respectively. For the 

mAP50 metric, the highest value was obtained by the model "Train39" at 98.41%. The highest mAP75 

value, 91.93%, was achieved by the model "Train31". These results are highly promising. Depending 

on the possible application of developed models, different models should be used: identification of  

poles – model “Train32”, extraction of the entire objects – model "Train31" or "Train39".  

The performance of the models can vary when applied to images with different resolutions. In 

this situation images can be rescaled or the model can be fine-tuned using additional data. 
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In future research, the trained model will be used to extract utility poles from images for further 

analysis, such as insulators or crack detection. These elements are small and may be difficult to detect 

in a low-resolution images or in images taken from a distance. To augment collected data integrating 

other sensors such as LiDAR and RADAR (Radio Detecting and Ranging) can be considered. However, 

this approach creates new challenges in terms of processing and integration of data from multiple 

sources.  
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