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A b s t r a c t  

This study investigates the deflection behaviour of Bubble Deck slabs using numerical and experimental 

approaches. Two techniques—numerical homogenization and 3D cross-sectional integration—are applied to 

derive equivalent properties for simplified finite element models. A scaled slab specimen (1020×2040×60 mm) 

with a reinforcement mesh of Ø4 bars spaced at 30 mm (top and bottom) and plastic spheres (Ø40 mm, spaced at 

60 mm) is tested under self-weight and a mid-span linear load. The slab, simply supported on two shorter edges, 

is modelled both in full 3D and using simplified 2D model with homogenized parameters. Experimental deflections 

are compared with numerical and analytical/theoretical predictions to validate the proposed techniques, 

demonstrating their effectiveness in simplifying structural analyses while maintaining accuracy. 

Keywords: Bubble Deck slab, numerical homogenization, 3D cross-section integration, deflection analysis, 

finite element method, structural validation 

1. INRODUCTION 

Prefabricated concrete structures such as floor slabs, girders, and columns have numerous advantages, 

including (a) quality standard, (b) saving of formwork, (c) short construction time, (d) durability of the 

structure, and (e) very low energy consumption [1-4]. These characteristics have made prefabricated 

concrete elements widely used in industrial and residential buildings worldwide over the past decades 

[2,5]. Among these, floor slabs and girders are some of the most frequently utilized prefabricated 

structural elements [5,6]. 
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One of the most innovative prefabricated floor systems is the bubble deck ceiling. Originally designed 

in the late 1990s by Jorgen Bruenig, this system uses hollow plastic spheres to replace the non-structural 

concrete within slabs, significantly reducing the dead weight while maintaining two-way action [7-11]. 

The bubble deck ceiling consists of evenly distributed plastic inserts secured within a steel reinforcement 

cage, placed between the upper and lower reinforcement layers of a reinforced concrete slab [11-13]. 

Such systems align with both technical requirements, including strength, stiffness, and durability, and 

economic considerations such as reduced construction and operating costs [14,15,16,17]. By reducing 

the amount of concrete by up to 50% and using recyclable HDPE plastic, this approach also contributes 

to sustainable construction practices [10,11,18-20]. 

Despite these advantages, the analysis and optimization of bubble deck slabs present challenges 

due to their complex structure. Full three-dimensional finite element (FE) modelling is often required to 

accurately capture the mechanical behaviour of such systems under various loading conditions. 

Numerous studies have developed 3D models to simulate nonlinear behaviour and assess specific 

aspects like shear stress or bending performance [21-27]. While effective, such detailed modelling is 

computationally intensive and time-consuming, making it impractical for routine engineering tasks. 

A promising alternative is homogenization, a mathematical technique that simplifies complex structures 

into models with equivalent properties. Homogenization enables engineers to replace multilayer 

composite cross-sections with single-layer models that retain equivalent mechanical behaviour. Various 

methods, including periodic homogenization [28,29], strain energy-based approaches [30,31], and 

multi-scale homogenization [32,33], have been proposed and extensively studied. Biancolini’s method 

of strain energy equivalence [31] and its subsequent extensions [34,35] have proven particularly 

effective for analysing sandwich panels and composite structures. 

In the context of bubble deck ceilings, numerical homogenization offers a viable solution for 

balancing computational efficiency with accuracy. By replacing the full 3D representative volume 

element (RVE) with a simplified shell model, this approach enables the analysis of large-scale systems 

while retaining the essential mechanical characteristics of the original structure [34-36]. 

Homogenization techniques have also been successfully applied to optimize bubble deck slab designs, 

minimizing concrete usage while ensuring compliance with serviceability limit states [35-38]. 

This paper focuses on validating two homogenization methods for bubble deck ceilings: numerical 

homogenization and spatial integration-based homogenization. The former uses finite element analysis 

to compute stiffness matrices of simplified models, while the latter integrates material properties over 

the RVE domain to derive effective parameters. Both methods are assessed against experimental data, 

including displacements and deflections under realistic loading conditions, to ensure their reliability and 

accuracy. The presented work builds upon previous studies [28,35-38] and introduces improvements to 

existing methodologies, particularly in accounting for transverse shear effects and optimizing bubble 

deck configurations. 

The novelty of this research lies in its comprehensive validation framework, combining numerical 

and experimental techniques to evaluate the performance of bubble deck ceilings. By demonstrating the 

efficacy of homogenization methods in accurately predicting structural behaviour, this study contributes 

to advancing sustainable and efficient design practices in prefabricated concrete construction. 

2. METHODS AND MATERIALS 

2.1. Experimental model  

The experimental model is a scaled-down slab designed for laboratory conditions, with dimensions of 

2040 mm × 1020 mm and a thickness of 60 mm. The slab incorporates spherical voids created by 
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uniformly distributed ping-pong balls, arranged in a 34×17 grid across the slab’s length and width. Each 

ball has a standard diameter of 40 mm. The slab is reinforced with a top and bottom mesh of Ø3 mm 

steel bars, spaced at 30 mm intervals. The concrete cover is 15 mm and bottom surfaces 

(Figure1a,1b,1c). 

 

   
(a) (b) (c) 

Fig. 1. Bubble deck slab, (a) meshes of steel bars with balls between, (b) model of slab prepared for concreting, 

(c) concreted slab 

The slab is simply supported along its shorter edges, with supports placed 20 mm from each edge. It is 

subjected to self-weight and a uniformly distributed line load applied along the middle of its span, across 

the entire width. The total applied load is approximately 500 kg, ensuring non-destructive testing while 

generating measurable deflections. Deflections are measured using a laser with an accuracy of 10 

micrometres, enabling precise analysis of the slab’s performance under load. 

Table 1. Material properties 

Material Young's Modulus (E) Poisson's Ratio (ν) Density (ρ) 

Concrete (C20/25) 25 GPa 0.2 2400 kg/m³ 

Steel (Reinforcement) 205 GPa 0.3 7850 kg/m³ 

 

In the following section, the volumes of concrete, voids, and reinforcement materials are calculated to 

accurately determine the self-weight of the slab. This is essential for ensuring that the experimental 

model reflects realistic loading conditions and provides reliable data for validating numerical 

simulations. To calculate the concrete volume, the total volume of the slab is reduced by the volume of 

the voids created by the ping-pong balls and the volume of the reinforcement steel mesh. 

 Total slab volume: 𝑉𝑠𝑙𝑎𝑏 = 𝐿 ⋅ 𝑊 ⋅ 𝐻 = 0.124848 m3 

 Volume of ping-pong balls: 

o Volume of one ball: 𝑉𝑏𝑎𝑙𝑙 =
4

3
𝜋𝑟3 = 3.351 ⋅ 10−5 m3 

o Total volume of 34×17 balls: 𝑉𝑏𝑎𝑙𝑙𝑠 = 34 ⋅ 17 ⋅ 𝑉𝑏𝑎𝑙𝑙 = 0.019369 m3 

 Volume of steel mesh: 

o Volume of a bar per unit length: 𝑉𝑏𝑎𝑟 = 𝜋𝑟2 ⋅ 𝐿𝑏𝑎𝑟 = 0.707 ⋅ 10−5 m3 
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o Total bars (top and bottom mesh): Number of 2m long bars per mesh (top and bottom): 

2 ⋅  33 = 66 pcs; Number of 1m long bars per mesh (top and bottom): 132 pcs;   

𝑉𝑠𝑡𝑒𝑒𝑙 = 264 ⋅ 𝑉𝑏𝑎𝑟  = 0.001866 m3 

 Net concrete volume: 𝑉𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝑉𝑠𝑙𝑎𝑏 − 𝑉𝑏𝑎𝑙𝑙𝑠 − 𝑉𝑠𝑡𝑒𝑒𝑙 = 0.103613 m3 

Summary: 

 Total concrete weight: 0.1036 m3 ⋅ 2400kg m3⁄ = 248.67 kg. 

 Total weight reduction (balls): 0.0194 m3 ⋅ 2400 kg/m3 = 46.48 kg (15,5%). 

 Reinforcement steel weight: 0.0019 m3 ⋅ 7850 kg/m3 = 14.65 kg. 

2.2. Representative Volume Element (RVE) 

A Representative Volume Element (RVE) is a fundamental building block used in computational 

mechanics to model materials with periodic structures or repetitive patterns. It captures the essential 

microstructural features of the material, such as voids, inclusions, or reinforcement elements, and is 

designed to represent the macroscopic behaviour of a material when subjected to external loads. The 

RVE is a critical component in homogenization techniques, which aim to bridge the gap between 

microscale and macroscale analysis. 

 
Fig. 2. Representative Volume Element (RVE) of the slab with spherical voids (𝜙 = 40 mm) and reinforcement 

bars (𝜙 = 3 mm) 

Figure 2 illustrates the Representative Volume Element for the analysed structure. It is a highly detailed 

computational model that accurately replicates all the features of the real-world slab, including the 

spherical voids with a diameter of 40 mm and the reinforcement bars. The voids are symmetrically 

distributed within the volume, ensuring periodicity, which is a key characteristic of the RVE. 

In this periodic and condensed model, the geometry and material properties are discretized using 

nodes or finite elements to capture the detailed interactions between the voids, reinforcement, and 

surrounding concrete. The RVE includes a mesh of nodes or finite elements that accurately represents 

the spherical void, enabling precise analysis of the mechanical response of the structure. Such detailed 

modelling ensures that both analytical integrals and the condensed stiffness matrix derived from the 

RVE can reliably reflect the global behaviour of the entire slab. 

This periodic and condensed approach leverages homogenization techniques, simplifying the 

complexity of analysing the full-scale slab while retaining the accuracy needed to study its structural 
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performance. The RVE serves as the foundational unit for understanding the interplay between 

microstructural features and macroscopic mechanical properties. 

There are two main approaches to homogenization, described in details later in this article First 

uses spatial integration of RVE. This approach analytically integrates material properties across the RVE 

domain. It discretizes the RVE into infinitesimally small regions and performs integration to calculate 

effective material parameters such as stiffness or compliance. One major advantage is that the size of 

the elements in the RVE can be extremely small, ensuring high accuracy without computationally 

expensive matrix operations. Unlike numerical methods, this approach does not require solving large 

systems of equations, making it computationally efficient. 

The other one - Numerical Homogenization based on Finite Elements (FE) involves meshing the 

RVE with finite elements and solving the resulting stiffness matrix numerically. While this approach 

allows for detailed discretization within the RVE, it comes with significant computational challenges. 

The stiffness matrix for a finely discretized RVE can contain tens or hundreds of thousands of rows and 

columns, requiring substantial computational resources for operations such as matrix inversion, which 

is standard in static condensation. For example, in a detailed model, the inversion of large stiffness 

matrices becomes a bottleneck, limiting the scalability of the approach for highly detailed or large-scale 

RVEs. 

While numerical homogenization is highly versatile, its computational intensity imposes practical 

limits. The need to generate and manipulate large matrices makes it unsuitable for problems requiring 

extreme resolution or a high degree of precision in the discretization. Additionally, memory 

requirements and computation time grow exponentially with the size of the RVE, further emphasizing 

the importance of selecting an appropriate balance between accuracy and computational cost. 

Despite these limitations, RVEs remain an invaluable tool in material modelling and design. Advances 

in computational power and algorithms are continuously improving the feasibility of numerical 

homogenization for larger and more complex problems. Hybrid approaches that combine numerical and 

analytical homogenization may provide a pathway to leverage the strengths of both methods, balancing 

computational efficiency with accuracy. In the case of models with periodic microstructures like the one 

shown, RVEs provide a robust framework for studying the interplay between microstructural geometry 

and macroscopic behaviour, offering insights that guide material optimization and structural design. 

2.3. Numerical homogenization 

In homogenization, the goal is to transform a complex 3D model into a simplified 2D representation 

that, through effective parameters, accurately reflects the behaviour of the full 3D model. This approach 

is particularly effective for calculating displacements with high precision. Numerical homogenization 

leverages a numerical model based on the finite element method (FEM) without the need to solve the 

full system of equations. Instead, only the stiffness matrix of the Representative Volume Element (RVE) 

and the displacement-strain transformation matrix are required. 

The following steps outline the key procedures for calculating the effective (equivalent) stiffness of a 

Bubble Deck slab: 

 Define the RVE Geometry and Material Properties: 

o Identify the RVE dimensions, including the distribution of voids (e.g., spheres) and 

reinforcement. 

o Assign material properties such as Young’s modulus 𝐸, Poisson’s ratio 𝜈, and shear 

modulus 𝐺 to each material in the RVE. 

 Finite Element Mesh: 
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o Generate a 3D finite element mesh of the RVE, ensuring adequate resolution for 

accurate results. 

o Use e.g. 8-node hexahedral elements for the mesh to capture the geometry and material 

distributions effectively. 

 Compute the Condensed Stiffness Matrix (𝐊𝑒): 

o Assemble the global stiffness matrix 𝐊 by integrating the element stiffness matrices 𝐤𝑒 

over the RVE domain. 

o Include material heterogeneities and voids as defined by the material map. 

 Transformation to Effective Parameters: 

o Use a displacement-strain transformation matrix 𝐇 to relate local displacements to 

macroscopic strains. Transformation matrix 𝐇 combines general strains 𝛜 =

[𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦𝛾𝑥𝑧, 𝛾𝑦𝑧 , 𝜅𝑥, 𝜅𝑦, 𝜅𝑥𝑦]
𝑇

 and displacement 𝑑 = [𝑢, 𝑣, 𝑤]𝑇. For a node 𝑖 located 

at (𝑥, 𝑦, 𝑧), and is defined as: 

𝐇𝑖 = [

𝑥 0 𝑦 2⁄ 𝑧 2⁄ 0 𝑥𝑧 0 𝑦 𝑧 2⁄

0 𝑦 𝑥 2⁄ 0 𝑧 2⁄ 0 𝑦𝑧 𝑥 𝑧 2⁄

0 0 0 𝑥 2⁄ 𝑦 2⁄ −𝑥2 2⁄ −𝑦2 2⁄ −𝑥𝑦 2⁄
] (2.1) 

o Compute the effective stiffness matrix 𝐀𝐁𝐃𝐑 using: 

𝐀𝐁𝐃𝐑 =
𝐇𝑇 ⋅ 𝐊𝑒 ⋅ 𝐇

𝑎𝑟𝑒𝑎
 (2.2) 

where 𝑎𝑟𝑒𝑎 is the surface area of the RVE in the xy-plane. 

 Extract Effective Parameters: 

o Divide the effective stiffness matrix into submatrices representing in-plane stiffness 

(𝐀), coupling term (𝐁), bending stiffness (𝐃), and transverse shear stiffness (𝐑). 

This homogenization approach provides a computationally efficient way to represent complex 3D 

structures like Bubble Deck slabs using simplified 2D models while maintaining accuracy in 

displacement and stiffness predictions. 

Below, a concise outline of the process for calculating the condensed stiffness matrix is presented. 

This method focuses on transforming the detailed 3D stiffness representation of a structure, such as an 

RVE, into a reduced form suitable for numerical homogenization. The procedure leverages the finite 

element method to efficiently capture the essential mechanical behaviour of the model while reducing 

computational complexity. By condensing the stiffness matrix, the approach simplifies the 

representation of the internal and external degrees of freedom, enabling effective parameter extraction 

that accurately reflects the structural response of the full model. This process forms the foundation for 

developing equivalent 2D representations of complex 3D structures. 

The mains steps are: 

 Define Element Geometry: 

o For an 8-node hexahedral element, the geometry is interpolated using shape functions 

𝑁𝑖, which are functions of natural coordinates 𝜉, 𝜂, 𝜁 in the range 𝜉 ∈ [−1,1], 𝜂 ∈
[−1, 1], 𝜁 ∈ [−1,1]: 

𝑁𝑖(𝜉, 𝜂, 𝜁) =
1

8
(1 + 𝜉𝑖𝜉)(1 + 𝜂𝑖𝜂)(1 + 𝜁𝑖𝜁) (2.3) 

where 𝜉𝑖, 𝜂𝑖, 𝜁𝑖 are the natural coordinates of node 𝑖. 
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 Compute Strain-Displacement Matrix (𝐁𝑠): 

o The strain-displacement matrix relates nodal displacements to strains in the element: 

𝐁𝑠 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
0 0 …

𝜕𝑁8

𝜕𝑥
0 0

0
𝜕𝑁1

𝜕𝑦
0 … 0

𝜕𝑁8

𝜕𝑦
0

0 0
𝜕𝑁1

𝜕𝑧
… 0 0

𝜕𝑁8

𝜕𝑧
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥
0 …

𝜕𝑁8

𝜕𝑦

𝜕𝑁8

𝜕𝑥
0

0
𝜕𝑁1

𝜕𝑧

𝜕𝑁1

𝜕𝑦
… 0

𝜕𝑁8

𝜕𝑧

𝜕𝑁8

𝜕𝑦
𝜕𝑁1

𝜕𝑧
0

𝜕𝑁1

𝜕𝑥
…

𝜕𝑁8

𝜕𝑧
0

𝜕𝑁8

𝜕𝑥 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (2.4) 

o The derivatives 
𝜕𝑁𝑖

𝜕𝑥
,
𝜕𝑁𝑖

𝜕𝑦
,
𝜕𝑁𝑖

𝜕𝑧
 are computed using the Jacobian transformation: 

𝜕𝐍

𝜕𝑥
= 𝐉−1

𝜕𝑁

𝜕𝜉
,    𝐉 =

𝜕𝑥

𝜕𝜉
 (2.5) 

 Define Material Stiffness Matrix (𝐃𝑚): 

o For isotropic materials: 

𝐃𝑚 =
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈 0 0 0

𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
1 − 2𝜈

2
0 0

0 0 0 0
1 − 2𝜈

2
0

0 0 0 0 0
1 − 2𝜈

2 ]
 
 
 
 
 
 
 
 

 (2.6) 

o 𝐸: Young's modulus, 𝜈: Poisson's ratio. 

 Formulate Element Stiffness Matrix (𝐤𝑒): 

o Using numerical integration (e.g., Gauss quadrature) over the volume of the element: 

𝐤𝑒 = ∫𝐁𝑠
𝑇𝐃𝑚𝐁𝑠 𝑑𝑉

𝑉

 (2.7) 

o Approximated as: 

𝐤𝑒 = ∑𝑤𝑖  𝐁𝑠
𝑇𝐃𝑚𝐁𝑠 |𝐉|

𝑛

𝑖=1

 (2.8) 

where 𝑤𝑖 are the Gauss weights, and |𝐉| is the determinant of the Jacobian. 

 Assemble Global Stiffness Matrix (𝐊): 
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o Combine 𝐤𝑒  for all elements into a global matrix 𝐊 based on connectivity and degrees 

of freedom. 

 Apply Static Condensation: 

o Define External Nodes: The external nodes are defined as those located on the side 

surfaces of the RVE. 

o Define Degrees Of Freedom (DOF) for external and internal nodes. 

o Static Condensation Equation: The condensed stiffness matrix 𝐊𝑒 is calculated as: 

𝐊𝑒 = 𝐊𝑒𝑒 − 𝐊𝑒𝑖 ⋅ 𝐊𝑖𝑖
−1 ⋅ 𝐊𝑖𝑒 (2.9) 

where: 

𝐊𝑒𝑒 = 𝐊(𝑒, 𝑒): Submatrix for external DOFs, 

𝐊𝑖𝑖 = 𝐊(𝑖, 𝑖): Submatrix for internal DOFs, 

𝐊𝑒𝑖 = 𝐊(𝑒, 𝑖) and 𝐊𝑖𝑒 = 𝐊(𝑖, 𝑒): Coupling submatrices. 

2.4. Homogenization through spatial integration 

Homogenization through spatial integration is a method used to derive effective material properties by 

averaging the mechanical behaviour of a heterogeneous structure over its volume. Instead of relying on 

detailed numerical models for every microscopic feature, this approach computes macroscopic 

properties by integrating stresses, strains, or stiffness matrices across the spatial domain of the 

Representative Volume Element (RVE). This enables the determination of equivalent material 

parameters, such as effective stiffness or compliance, that capture the overall response of complex 

materials, making it particularly useful for modelling composites or perforated structures like Bubble 

Deck slabs. 

The integral form of the centre of gravity calculation, incorporating material properties and spatial 

coordinates x, y, and z, results from the weighted summation of the z-coordinate for the centre of gravity 

divided by the summation of material stiffness contributions: 

𝑧0 =
∭ 𝐸(𝑥, 𝑦, 𝑧) ⋅ 𝑧𝑐  𝑑𝑥 𝑑𝑦 𝑑𝑧

Ω

∭ 𝐸(𝑥, 𝑦, 𝑧)𝑑𝑥 𝑑𝑦 𝑑𝑧
Ω

, (2.10) 

where: 

 𝐸(𝑥, 𝑦, 𝑧) is the Young's modulus at position (𝑥, 𝑦, 𝑧), as determined by the material map for 

concrete, steel and for voids. 

 𝑧𝑐 is the z-coordinate of the centroid of the element at (𝑥, 𝑦, 𝑧). 

 Ω is the domain of the RVE. 

As was already mentioned previously The effective matrix ABD matrix can be expanded to include the 

transverse shear stiffness matrix 𝐑, making it an ABDR. The explanation of its components is as follows: 

 Matrix 𝐀 (Membrane Stiffness) - relates in-plane forces (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) to mid-plane strains 

(𝜖𝑥 , 𝜖𝑦, 𝛾𝑥𝑦). 

 Matrix 𝐁 (Coupling Stiffness) - relates in-plane forces (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) to bending curvatures 

(𝜅𝑥 , 𝜅𝑦, 𝜅𝑥𝑦), and bending moments (𝑀𝑥 ,𝑀𝑦, 𝑀𝑥𝑦) to mid-plane strains (𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦). 

 Matrix 𝐃 (Bending Stiffness) - relates bending moments (𝑀𝑥,𝑀𝑦, 𝑀𝑥𝑦) to curvatures 

(𝜅𝑥 , 𝜅𝑦, 𝜅𝑥𝑦). 

 Matrix 𝐑 (Transverse Shear Stiffness) - relates transverse shear forces (𝑄𝑥 , 𝑄𝑦) to transverse 

shear strains (𝛾𝑥𝑧, 𝛾𝑦𝑧). 
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 Structure of the 𝐀𝐁𝐃𝐑 Matrix: 

𝐀𝐁𝐃𝐑 = [
𝐀 𝐁 0
𝐁 𝐃 0
0 0 𝐑

] (2.11) 

In order to compute the stiffness matrix components for a RVE the integral formulations are used. These 

formulations enable the translation of a complex 3D structure into equivalent 2D parameters that 

accurately reflect its mechanical behaviour. By integrating material properties and accounting for 

geometric and positional factors, effective in-plane stiffness, bending stiffness, and transverse shear 

stiffness are determined. For homogeneous RVEs without voids or reinforcements, these equations 

simplify, providing direct relationships between stiffness components and the plate's thickness. The 

main steps has to be followed: 

 Material stiffness in-plane 

𝐐(𝑥, 𝑦, 𝑧) =
𝐸𝑖

1 − 𝜈𝑖
2 ⋅ [

1 𝜈𝑖 0
𝜈𝑖 1 0

0 0
1 − 𝜈𝑖

2

] (2.12) 

 Transversal stiffness: 

𝐆(𝑥, 𝑦, 𝑧) =
5

6
[
𝐺𝑖 0
0 𝐺𝑖

] (2.13) 

 Membrane stiffness (𝐀): 

𝐀 =
1

𝑎𝑟𝑒𝑎
∭𝐐(𝑥, 𝑦, 𝑧)

𝛺

𝑑𝑥 𝑑𝑦 𝑑𝑧 (2.14) 

 Bending stiffness (𝐃) (i.e. weighted moment of inertia about 𝑧0): 

𝐃 =
1

𝑎𝑟𝑒𝑎
∭𝐐(𝑥, 𝑦, 𝑧) ⋅ (𝑧𝑖 − 𝑧0)

2𝑑𝑥 𝑑𝑦 𝑑𝑧
𝛺

 (2.15) 

 Transverse shear stiffness (𝐑): 

𝐑 =
1

𝑎𝑟𝑒𝑎
∭𝐆(𝑥, 𝑦, 𝑧)𝑑𝑥 𝑑𝑦 𝑑𝑧

𝛺

 (2.16) 

where: 

 𝑧𝑖: z-coordinate of the centre of each element. 

 𝐸𝑖 = 𝐸(𝑥, 𝑦, 𝑧): Young's modulus for material at location (𝑥, 𝑦, 𝑧). 

 𝐺𝑖 = 𝐺(𝑥, 𝑦, 𝑧): Kirchhoff’s modulus for material at location (𝑥, 𝑦, 𝑧). 

 𝜈𝑖 = 𝜈(𝑥, 𝑦, 𝑧): Poisson's ratio for material at location (𝑥, 𝑦, 𝑧). 

 𝑧0: Initial z-centre of gravity (relative to the 𝑥𝑦 −plane). 

 𝑎𝑟𝑒𝑎: surface area of the RVE base (in 𝑥𝑦 −plane). 

For the homogeneous RVE (no voids nor rebars) the above equations can be simplified, so the matrices 

𝐀,𝐁,𝐃 and 𝐑 are: 

𝐀 = 𝐐 ⋅ ℎ,    𝐁 = 𝟎,    𝐃 = 𝐐 ⋅
ℎ3

12
,    𝐑 = 𝐆 ⋅ ℎ (2.17) 
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2.5. Full 3D numerical model of Bubble Deck slab 

A comprehensive 3D finite element model was developed in Abaqus 2023 to precisely replicate the 

experimental slab. The model fully reflects the real-world configuration, including 17 × 34 spherical 

voids (see Figure 3a) representing ping-pong balls and reinforcement in the form of a mesh of Ø3 mm 

bars, spaced at 30 mm intervals (see Figure 3c), both at the top and bottom of the slab, with a 15 mm 

offset from the surfaces. The voids and reinforcement are positioned exactly as in the physical slab, 

ensuring an accurate representation of the structure (see Figure 3b). 

After meshing the reinforcement, additional beam elements were included in the model, resulting in the 

following mesh statistics: 

 Total number of nodes: 1,268,986 

 Total number of elements: 855,298, comprising: 

o 18496 linear line elements of type B31 (for reinforcement bars) 

o 836,802 quadratic tetrahedral elements of type C3D10 (for the slab and voids, see 

Figure 3d) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Visualization of different slab configurations and their mesh representations. (a) schematic representation 

of the slab with spherical voids and reinforcement bars. (b) Meshed model of the slab showing the distribution of 

voids and reinforcement in detail. (c) view of the net of top and bottom reinforcement bars. (d) Full 3D mesh 

model capturing all geometric and material details 

The embedded beam elements for the reinforcement introduces additional degrees of freedom. 

Each node of the tetrahedral elements has three degrees of freedom, while nodes of the beam elements 

have six degrees of freedom. This high-resolution model accurately captures the mechanical behaviour 
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of the slab and its reinforcement under various loading conditions. While computationally demanding, 

it provides critical insights into stress distribution, deformation, and interaction effects between the slab 

and reinforcement, serving as a benchmark for validating experimental and simplified numerical 

models. 

2.6. Simplified numerical model of Bubble Deck slab 

The simplified finite element model represents a computationally efficient alternative to the full 3D 

model, designed to reduce the computational burden while maintaining an adequate level of accuracy 

for specific analyses. The model consists of: 

 Total number of elements: 2312 four-node shell elements, 

 Total number of nodes: 2415, each with six degrees of freedom (DOF), see Figure 4. 

The total number of degrees of freedom for the simplified model is: 6×2415=14,490 DOF’s, which is 

approximately 265 times less compared to full 3D model consisting of approximately 4 million DOF’s. 

This represents a reduction by more than two orders of magnitude, significantly decreasing 

computational time and resource requirements. 

 

  
(a) (b) 

 

Fig. 4. Simplified model: (a) mesh representation of the slab model; (b) loads and boundary conditions 

The simplified model employs four-point Gauss quadrature with selective integration to eliminate 

the shear locking effect, which can distort results in thin shell elements under bending-dominated 

conditions. This approach ensures accurate stiffness representation while maintaining computational 

efficiency. 

The model directly utilizes the 𝐀𝐁𝐃𝐑 stiffness matrix (already explained in details in previous 

sections), which encapsulates in-plane stiffness (𝐀), bending stiffness (𝐃), and transverse shear stiffness 

(𝐑), without the need to define an equivalent thickness or effective constitutive parameters. By avoiding 

these approximations, the model maintains fidelity to the mechanics of the problem within its scope. 

However, s significant limitation of this approach is its inability to directly compute stresses within the 

structure. Instead, the simplified model can determine accurately nodal displacements and rotations, 

general strains as well as determine: 

 Normal forces (𝑁𝑥 , 𝑁𝑦, 𝑁𝑥𝑦) 

 Shear forces (𝑄𝑥 , 𝑄𝑦) 

 Bending moments (𝑀𝑥,𝑀𝑦, 𝑀𝑥𝑦). 

The relationship for these quantities is given by: 



NUMERICAL AND EXPERIMENTAL VALIDATION 

OF HOMOGENIZATION TECHNIQUES FOR BUBBLE DECK SLABS 

241 

 
 

[
 
 
 
 
 
 
 
 
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

𝑄𝑥

𝑄𝑦 ]
 
 
 
 
 
 
 
 

=
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[
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𝐷11 𝐷12 0
𝐷21 𝐷22 0
0 0 𝐷33

] 𝟎3×2

𝟎2×3 𝟎2×3 [
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0 𝑅22

]
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𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

𝛾𝑥𝑧

𝛾𝑦𝑧]]
 
 
 
 
 
 
 

 (2.18) 

Here: 

 𝐀,𝐁,𝐃, 𝐑 are the extensional, coupling, bending, and transverse shear stiffness matrices, 

respectively. 

 𝜖, 𝜅, 𝛾 represent membrane strains, curvatures, and transverse shear strains, which are computed 

in each Gauss point of each element based on nodal displacements. 

The displacements (𝑢, 𝑣, 𝑤) and rotations (𝜃𝑥, 𝜃𝑦) at the nodes are obtained by solving the finite element 

equilibrium equations: 

𝐊 ⋅ 𝐮 = 𝐅  →   𝐮 = 𝐊−1𝐅 (2.19) 

where: 

 𝐊: Global stiffness matrix (explained already in previous section), 

 𝐮: Global nodal displacement vector (including translations and rotations), 

 𝐅: Global force vector. 

Once 𝐮 is computed, the displacements and rotations at each node are extracted directly from the vector. 

Strains at a specific point within an element (here at 4 Gauss points in each element) are calculated using 

the strain-displacement matrix (𝐁𝑠) and the nodal displacement vector (𝐮𝑒): 

𝛜 = 𝐁𝑠 ⋅ 𝐮𝑒 (2.20) 

where: 

 𝜖 = [𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦, 𝜅𝑥 , 𝜅𝑦, 𝜅𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧]
𝑇

: Strain vector (membrane, bending, and shear 

components), 

 𝐁𝑠: Strain-displacement matrix, 

 𝐮𝑒: Element nodal displacement vector. 

In case of 4-node shell elements (differently as in case of 8-node hexahedral element) the strain-

displacement matrix is divided into components for membrane (𝐁𝑚), bending (𝐁𝑏), and shear (𝐁𝑟) 

strains: 

Membrane Strains (𝛜𝑚): 

𝐁𝑚 =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
0 0 0 0 …

𝜕𝑁4

𝜕𝑥
0 0 0 0

0
𝜕𝑁1

𝜕𝑦
0 0 0 … 0

𝜕𝑁4

𝜕𝑦
0 0 0

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥
0 0 0 …

𝜕𝑁4

𝜕𝑦

𝜕𝑁4

𝜕𝑥
0 0 0

]
 
 
 
 
 
 

 (2.21) 

Bending Strains (𝛋): 
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𝐁𝑏 =

[
 
 
 
 
 
 0 0 0

𝜕𝑁1

𝜕𝑥
0 … 0 0 0

𝜕𝑁4

𝜕𝑥
0

0 0 0 0
𝜕𝑁1

𝜕𝑦
… 0 0 0 0

𝜕𝑁4

𝜕𝑦

0 0 0
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥
… 0 0 0

𝜕𝑁4

𝜕𝑦

𝜕𝑁4

𝜕𝑥 ]
 
 
 
 
 
 

 (2.22) 

Shear Strains (𝛄): 

𝐁𝑟 =

[
 
 
 0 0

𝜕𝑁1

𝜕𝑥
0 −𝑁1 0 … 0 0

𝜕𝑁4

𝜕𝑥
−𝑁4 0

0 0
𝜕𝑁1

𝜕𝑦
0 −𝑁1 … 0 0

𝜕𝑁4

𝜕𝑦
0 −𝑁4]

 
 
 
 (2.23) 

These matrices are combined into a global 𝐁s matrix: 

𝑩𝑠 = [

𝑩𝑚

𝑩𝑏

𝑩𝑟

] (2.24) 

The shape functions 𝐍 and their derivatives 𝜕𝐍/𝜕𝐱 are computed in the same manner as described in 

the previous equations for 8-node hexahedral or 4-node shell elements, using natural coordinates and 

the Jacobian transformation, see Equation (2.5). This ensures consistency in the formulation of the 

strain-displacement relationship across different elements. By leveraging these shape functions and 

derivatives, the 𝐁𝑠 matrix accurately represents the strain distribution within each element. 

In the simplified model, shear locking can occur due to the over-constrained nature of the transverse 

shear stiffness when using standard finite element formulations. To mitigate this issue, selective reduced 

integration is applied to the shear-related terms in the 𝐁𝑟 matrix of the shell elements, ensuring accurate 

shear deformation representation without introducing spurious stiffness. This approach improves the 

overall accuracy and convergence of the simplified model. 

3. RESULTS AND DISCUSSION 

3.1. Validation of Homogenization Methods with Analytical Models 

To validate the accuracy and reliability of the proposed homogenization methods, a simplified 

benchmark example is analysed. The model consists of a fully concrete slab with a thickness of 60 mm, 

where the Representative Volume Element (RVE) is a cube with dimensions of 60×60×60 mm. This 

setup removes the complexity introduced by voids and reinforcement, enabling direct comparison of 

results with analytical solutions for a homogeneous material. The concrete properties used in the model 

are consistent with the material parameters defined earlier in the study. 

The comparison includes numerical homogenization, which relies on finite element discretization of the 

RVE, and homogenization through spatial integration, which analytically calculates effective stiffness 

parameters by integrating over the RVE domain. Both approaches are evaluated against theoretical 

predictions for a homogeneous concrete slab to assess their precision. This benchmark case provides a 

critical foundation for understanding the performance of the homogenization methods in more complex 

configurations. By validating these methods with an analytically tractable case, their applicability to 
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more realistic scenarios, such as voided slabs with reinforcement, can be established with greater 

confidence. 

The calculated stiffness values for the C20/25 concrete RVE are as follows: 

 Axial stiffness (EA): 𝐸 (1 − 𝜈2)⁄ ⋅ 𝑡 = 1.562 ⋅ 106 N/mm 

 Bending stiffness (EI): 𝐸 (1 − 𝜈2)⁄ ⋅ 𝑡3 12⁄ = 4.687 ⋅ 108 Nmm 

 Transverse shear stiffness (GA): 5 6⁄ ⋅ 𝐸 2(1 + 𝜈) ⋅ 𝑡 =⁄ 0.521 ⋅ 106 N/mm  

These values are based on a concrete slab with a thickness (𝑡) of 60 mm and a Young's modulus of 

25 GPa. 

Table 2. Validation of homogenization using spatial integration. The table shows the computed stiffness values 

(EA, EI, GA), corresponding errors compared to theoretical values, and the number of nodes in the model 

number EA [N] EI [Nmm2] GA [N] Error [%] 

of nodes ×10-6 ×10-6 ×10-6 EA EI GA 

216 1.148 577.8 0.383 -26.53 23.27 -25.41 

1,728 1.331 485.9 0.444 -14.79 3.66 -13.49 

27,000 1.463 470.3 0.488 -6.35 0.32 -4.91 

216,000 1.512 469.0 0.504 -3.25 0.06 -1.77 

1,728,000 1.537 468.8 0.512 -1.64 0.01 -0.14 

13,824,000 1.550 468.8 0.517 -0.83 0.00 0.69 

 

The results obtained using spatial integration for homogenization (see Table 2 and Fig. 5) 

demonstrate a clear trend of convergence as the number of nodes increases. For the smallest model with 

216 nodes, significant errors are observed in all stiffness components (EA:−26.53%, EI:23.27%, 

GA:−25.41%) due to the coarse discretization of the geometry. However, as the node count increases to 

1,728 and beyond, the accuracy improves significantly, with errors for the largest model (13,824,000 

nodes) dropping to less than 1% for EA and EI, and slightly higher for GA (0.69%). This demonstrates 

the effectiveness of the integration approach in capturing the effective stiffness parameters with high 

fidelity, provided sufficient spatial resolution is employed. Notably, the error for GA converges more 

slowly, reflecting the inherent sensitivity of shear stiffness to discretization. 

The results from numerical homogenization (see Table 3 and Fig. 6) show a similar trend, with 

errors decreasing as the number of degrees of freedom (DOFs) increases. However, the initial errors for 

coarse models (e.g., 192 DOFs) are relatively low compared to the spatial integration approach, 

particularly for EA (3.94%3) and EI (7.74%). This indicates that finite element models can capture 

stiffness parameters reasonably well even with a coarser mesh. As the DOFs increase to 89,373, the 

errors reduce further, with EA and EI stabilizing around 3% and 1.5%, respectively. However, the error 

for GA remains higher (−10.08%) and converges more slowly, consistent with the challenges in 

modelling transverse shear stiffness in numerical methods. 
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Table 3. Validation of numerical homogenization using finite elements. The table presents the computed 

stiffness values (EA, EI, GA), their respective errors, and the number of degrees of freedom (DOFs) in each 

model 

number EA [N] EI [Nmm2] GA [N] Error [%] 

of DOF’s ⋅10-6 ⋅10-6 ⋅10-6 EA EI GA 

192 1.624 505.0 0.513 3.94 7.74 -1.51 

1,029 1.615 484.1 0.478 3.36 3.28 -8.05 

6,591 1.611 478.1 0.466 3.12 1.99 -9.13 

12,288 1.611 477.2 0.464 3.07 1.81 -9.51 

27,783 1.610 476.6 0.463 3.03 1.66 -9.82 

89,373 1.609 476.0 0.461 3.00 1.55 -10.08 

 

Both methods show improved accuracy with increased resolution. Spatial integration achieves superior 

accuracy for large models, particularly for EA and EI, as it does not rely on solving large matrix systems. 

In contrast, numerical homogenization provides acceptable accuracy even for smaller models, making 

it computationally advantageous for preliminary analyses. However, both methods struggle with GA, 

with numerical homogenization showing consistently higher errors. This suggests that additional 

refinement or alternative approaches may be required for accurately modelling transverse shear stiffness. 

 

 
Fig. 5. Error trends in stiffness parameters (EA, EI, GA) for spatial integration homogenization as a function of 

the number of nodes. The figure illustrates the convergence of the errors as the model resolution increases 
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The observed inaccuracies in the calibration of transverse shear stiffness arise from the inherent 

assumptions of the homogenization method based on energy principles. Specifically, the tangential 

interactions are condensed to nodes located on the lateral surfaces of the Representative Volume 

Element (RVE). This approach, while computationally efficient, does not fully capture the distribution 

of shear stresses, leading to approximation errors. A potential solution to reduce these inaccuracies 

involves selecting nodes on the upper and lower surfaces of the RVE. However, such a modification 

compromises the method’s universality and flexibility across different applications. To address this, an 

appropriately refined finite element mesh is recommended, as it enables a more precise representation 

of the material's mechanical behaviour while maintaining the robustness of the homogenization 

framework. 

 
Fig. 6. Error trends in stiffness parameters (EA, EI, GA) for numerical homogenization as a function of the 

number of DOFs. The figure highlights the decreasing errors with increasing model complexity 

3.2. Comparison of Full 3D and Simplified Model for Deflection Analysis 

The numerical analyses using the full 3D model and the simplified model based on the ABDR matrix 

highlight the differences in their ability to predict structural behaviour. The simplified model employs 

homogenized stiffness values derived using spatial integration from 778,688 points, including the effects 

of reinforcement bars and spherical voids. The 𝐀𝐁𝐃𝐑 components are as follows: 

 A matrix: 

𝐀 = [
1.4887 0.3189 0
0.3189 0 0

0 0 0.5849
] × 106 N/mm (3.1) 
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 D matrix:  

𝐃 = [
479.32 99.10 0
99.10 479.32 0

0 0 190.11
] × 108 Nmm (3.2) 

 R matrix:  

𝐑 = [
0.487 0

0 0.487
] × 106 N/mm (3.3) 

The homogenized value (𝐴11 = 1.4887 × 106  N/mm) is approximately 4.7% lower than the theoretical 

reference value. This reduction reflects the influence of voids and reinforcement, which decrease the 

effective stiffness. The homogenized value (𝐷11 = 479.32 × 108 Nmm) is slightly higher than the 

theoretical value by 2.3%. This increase may result from the reinforcement bars compensating for the 

stiffness loss due to voids. The homogenized value (𝑅11 = 4.874 × 105 N/mm) is 6.4% lower than the 

theoretical reference. This reduction highlights the sensitivity of shear stiffness to heterogeneities in the 

structure. 

 

 
Fig. 7. Comparison of deflection maps for the full 3D model and the simplified ABDR model. The maximum 

deflections predicted are −2.45 mm (full 3D model) and −2.52 mm (simplified model), closely aligning with the 

experimentally measured deflection of −2.59 mm 

The full 3D model predicts a maximum deflection of −2.45 mm. This result captures the detailed 

interaction between voids, reinforcement, and concrete material, making it more accurate but 

computationally demanding. The simplified model predicts a maximum deflection of −2.52 mm, slightly 

higher than the full 3D model (Fig. 7). The discrepancy (∼2.8%) is within acceptable limits, 

demonstrating that the simplified model is effective for global deflection predictions, despite its inability 

to provide detailed stress or strain distributions. Both models exhibit similar deflection patterns, with 

the highest values concentrated at the centre of the slab, indicating good agreement in global behaviour. 

For a slab with dimensions 1020×2040 mm, freely supported along shorter edges and subjected to self-

weight and a line load of 500 kg at mid-span: 

𝑞𝑠𝑒𝑙𝑓 = 1.2414 × 10−3
N

mm2
 (3.4) 

Line load converted to N/m: 

𝑞𝑙𝑖𝑛𝑒 = 4.905 N/mm (3.5) 
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Maximum deflection (𝛿𝑚𝑎𝑥) using the theoretical bending stiffness:  

𝛿𝑚𝑎𝑥 =
𝑞𝑙𝑖𝑛𝑒 𝐿

3

48 𝐷11
+

5 𝑞𝑠𝑒𝑙𝑓 𝐿
4

384 𝐷11
= 0.879 + 1.845 = 2.724 mm (3.6) 

The calculated maximum deflection of the slab under self-weight and a line load of 500 kg at mid-span 

is approximately 2.72 mm. This value aligns closely with the numerical results from both the full 3D 

model (2.45 mm) and the simplified ABDR model (2.52 mm), indicating that both numerical approaches 

effectively capture the global behaviour of the slab. 

Table 4. Comparison of Deflection Results from Experimental, Numerical, and Analytical Approaches 

Approach 
Deflection 

[mm] 

Error 

[%] 

Experimental measurement 2.59 -- 

Full 3D model 2.45 -5.41 

Simplified ABDR model 2.52 -2.70 

Analytical calculation 2.72 5.02 

 

The experimental measurement of the slab's deflection under self-weight and an additional line load of 

500 kg yielded a maximum deflection of 2.59 mm. This value lies between the predictions of the full 

3D model (2.45 mm) and the simplified ABDR model (2.52 mm). The analytical calculation, based on 

the theoretical bending stiffness of the slab, provided a slightly higher deflection of 2.72mm (Table 4). 

4. CONCLUSIONS 

The comparison highlights the effectiveness of both numerical approaches in predicting the global 

deflection of the slab. The full 3D model, while computationally intensive, provides highly detailed 

insights into the interaction between voids, reinforcement, and concrete. Its slight underprediction of the 

deflection may be attributed to the assumptions and boundary conditions in the numerical setup, as well 

as the idealized material properties. On the other hand, the simplified ABDR model demonstrates a high 

degree of accuracy in capturing the slab's deflection while being computationally efficient. Its 

homogenized stiffness parameters, derived from spatial integration, effectively represent the global 

response of the structure. 

The experimental deflection (2.59 mm) validates the reliability of the numerical models, with both 

the full 3D and ABDR approaches showing errors below or close to 5% relative to the measured value. 

This confirms that the simplified ABDR model, despite its inability to provide local stress and strain 

distributions, is a valuable tool for preliminary design and analysis of complex structures such as slabs 

with voids and reinforcement. Moving forward, integrating experimental validation with numerical 

modelling will enhance the robustness of predictions, particularly in scenarios where the computational 

cost of a full 3D model is prohibitive. 
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